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•. Preface

This report summarizes the activities of the last three years of a multi-year

research cooperation between NASA Ames Research Center and the Faculty of

Aerospace Engineering, Technion, Haifa, Israel, in the area of advanced picto-

rial displays for Aerospace applications. The main drive for carrying out this

research project was to find the most suitable way of communicating complex

dynamic spatial information to a human observer. The air traffic control display

has been chosen as an interesting application in which the key elements are

excessive operator workload, the need for simultaneously managing large vol-

umes of complex dynamic data, and stringent requirements for safety.

Although spatial data sets are most naturally viewed in a perspective projec-

tion that integrates the horizontal and vertical information in one natural format,

these formats are not necessarily the most suitable ones for the typical air traffic

control task. The 'classical' air traffic control display shows a 'north-up' map of
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the area in which the aircraft are plotted as symbols, furnished with numerical

information about its identification, its intended destination, altitude and air-

speed. Many researchers have made comparisons between these dassical for-

mats and more advanced perspective displays. Although their conclusions are

often dear-cut and their findings indicate that one display type is performing

better than another one, these findings carl rarely be applied to the fully fledged

air traffic control task in a busy TRACON area. The same applies to our

results. Therefore, the merits of our work are not in the design of a novel ATC

display, but rather in the developments of tools and the establishment of a

sound methodology for understanding and optimizing the transfer of spatial

information to the human operator through perspective formats.

Air traffic control consists of a number of diverse and complex activities,

geared towards very specific objectives, ranging from maintaining a steady well-

separated traffic flow and solving unforeseen conflicts or handling emergency

situations, to planning national traffic patterns many hours ahead of time. Since

perspective formats, by nature, represent the spatial situation as seen from a given

vantage point, objects that are close by and viewed centrally are given more atten-

tion than objects that are far away and at the edge of the visual field. Hence, the

separation between far away aircraft in the peripheral vision might be difficult to

judge. In a flow control task this might pose a problem, since separation viola-

tions might occur anywhere and at any time. Therefore, terminal area control-

lers dealing with dense and interlacing traffic flows, might favor the constancy of

north-up, plan view displays.

In contrast to the flow control task, the traffic planning task demands insight

in three-dimensional traffic patterns and terrain lay-outs. In a re-routing task, for

example, the three-dimensional shape of a weather front might have to be con-

sidered. Properly designed perspective formats should be geared towards pro-

viding the operator with a clear and unambiguous understanding of the spatial

situation.

: Preface

The basic principle underlying our research activities is the notion that the

viewing parameters of perspective displays should be optimally adjusted to the

spatial lay-out that is viewed and to the task that the operator is performing.



This adjustmentcould be donemanuallyaswell asautomatically.Early stages

of the researchdealt with manual viewing parameterschemes.'Manipulation

handles' were naturally integratedin the three-dimensionalsceneand enabled

the operatora straight-forwardand intuitive way of manipulating the viewing

parameters.Specialmotion patternsweredesigned,resemblingthemotions of a

well-designedservosystem,that allowedgradual transitionsfrom one parame-

ter settingto another.

The method by which the viewing parametersare optimally adjusted is

quite unique,and hasled to theformulationof a conceptto whichwe refer to as

an active display system. The term active refers to the fact that the display no

longer functions as a passive window frame, in which spatial data are projected,

but acts as an intelligent system, that continuously and actively analyses, selects,

processes and presents the spatial information in such a way, that the operator is

able to derive from it the best understanding of the dynamic spatial situation.

The interested reader will discover that this intelligent process involves four

basic steps: analyzing, optimizing, deciding and executing, of which the first two

steps are the most complex ones. Analyzing is complex, since it involves decid-

hag which aspects of a viewed spatial lay-out are important. Optimizing is com-

plex because it requires the definition of a relevant cost function, which should

include a model of the human spatial perception process. Deciding and execut-

ing deal with the question whether, when and how the changes, suggested by

the two previous steps should be realized.

Apart from the practical issue of how to numerically find the optimum of a

complex multi modal cost surface, the main issue with any optimizer, remains to

prove that the selected optimum viewing parameter setting indeed represents

the best way of presenting the spatial information to the operator. A great deal

of efforts were devoted to proving this last issue. Two large experimental studies

were carried out, each of which lasting for one year, in which active air traffic

controllers participated. These studies considered both static as well as dynamic

aspects of interpreting spatial layouts. Although the tasks were quite abstracted

and structured to evaluate specific aspects of the human response, the results
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dearly proved that properly optimized scenes yield superior performance, in

particular when complex spatial data sets are involved.

After three years of work, we feel that we are at the beginning of an exciting

venture, rather than at the end if it. Rather than providing a ready product, the

merits of our work are in the definition of a novel and unique concept, which

has dearly proved its potential in a series of structured laboratory experiments.

Now the time has come to evaluate the concept in realistic air traffic scenarios.

Here, the analyzing and optimizing steps will demand a great deal of involve-

ment of experienced air traffic control personnel, who will be able to give the

vital clues on how the essential information, necessary for performing the task,

is hidden in the layout. We hope that the reader will enjoy this report and might

find the inspiration in it to try out new horizons in this exciting field of spatial

information transfer.

We could not have done this work without the sustained support and

encouragement of our colleagues at Ames, in particular during the experimental

work at Ames in the summers. I would like to thank Steve Ellis, Jim Latimer,

Dov Adelstein, Amy Wu (of system support), Nancy Dorighi, Cynthia Null,

Kevin Korker, Victor Lebaques, Sandy Lozito (for escorting me on base), Ron

Riesman, and the many other people in the Division, who's friendly smiles have

made my stays at Ames so pleasurable. Last but not least, I would like to thank

our air traffic control subjects of the Feemont Bay Area TRACON, who have

voluntarily struggled through lengthy scenarios and who's suggestions and com-

ments have gready contributed to our understanding of the problem.

Arthur Grunwald, Haifa,June, 1999

iv : Preface



" Table of Contents

Preface i

Table of Contents v

Abstract 1

1 Overview ............................................................ 3

1.1 Scope of the Research ............................................. 3

1.2 Background and Literature Survey ................................... 4

1.3 Proposed Concept ............................................... 16
1.4 Outline of the Active Perspective Display System ...................... 18

1.5 Organization of this report ......................................... 20

2 Spatial Perception Model from Static Perspective Images .............. • ...... 21
2.1 Introduction .................................................... 21

2.2 General Description of the Model ................................... 22

2.3 Mathematical Formulation ......................................... 26

2.4 Analytical Model Evaluation ....................................... 30

2.5 Summary ...................................................... 32

3 The Optimization Engine .............................................. 34
3.1 Introduction .................................................... 34

3.2 Synopsis of Genetic Algorithms .................................... 35

3.3 Why Use GAs? ................................................. 41

I

"v



3.4 GAs for theActive DisplayOptimization............................. 42
3.5 Summary...................................................... 64

4 PartTaskExperiment:StaticImages..................................... 65
4.1 Purpose........................................................ 65
4.2 Descriptionof theTask ........................................... 66
4.3 SubjectBackground,InstructionandTraining ......................... 69
4.4 ExperimentDesign............................................... 70
4.5 ExperimentResults.............................................. 71
4.6 Conclusions.................................................... 73

5 A Model for SpatialPerceptionfrom Moving Images........................ 75
5.1 Introduction.................................................... 75
5.2 GeneralDescriptionof theModel ................................... 76
5.3 MathematicalFormulation......................................... 78
5.4 Comparisonof theDynamicandStaticModel ......................... 79
5.5 Summary...................................................... 81

6 Part-TaskExperiment:Moving Images................................... 82
6.1 Introduction.................................................... 82
6.2 Purpose........................................................ 83
6.3 TheGraphicalDisplay............................................ 83
6.4 Descriptionof theTask ........................................... 90

6.5 Experiment Design ............................................... 93

6.6 Subject Background, Instruction and Training ......................... 94
6.7 Results ...................................................... 94

6.8 Summary ..................................................... 102

7 Discussion ......................................................... 105

A Rating Image Quality ................................................ 109

A.1 The Scene Analyzer ............................................. 109

A.2 The Objective Function .......................................... 111

B Analyses of Niching Schemes ......................................... 112

B. 1 The Sharing Parameter ........................................... 112

B.2 On Deterministic Crowding ....................................... 114

C References ......................................................... 115

vi °



List of Figures

1.1

1.2

1.3

1.4

1.6

1.5

1.7

2.1

2.2

2.3

2.4

3.4

3.1

3.2

3.3

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

4.1

4.2

The standard ATC scenario, as is practiced today ............................. 6

The ATC scenario under free flight ........................................ 8

A TRACON controller station showing a radar scope, source (NRC 1997) ......... 9

A data-tag ........................................................... 10

A traffic display in En-Route control centers, source (NRC 1997) ............... 11

A plan-view ATC display at a TRACON center, source (NRC 1997) ............. 12
The structure and the data flow of the active display system .................... 18

The geometry of a perspective image ...................................... 23

The spatial perception process ........................................... 24

The error predictions of the new model vs. the Grunwald et al. model (old) as a function

of the viewing azimuth angle ............................................ 31

The bias in the judgement error of the relative azimuth angle between the two spheres,

as a function of the viewing azimuth angle, for different field-of-view angles ...... 33

A crossover .......................................................... 36

A Chromosome representing a possible solution ............................. 36

The initial population and its fitness assignment according to the function value of each

member and the average function value ................................... 36
............................................ ..... 36The selection process.

A diploid chromosome is resolved using dominance .......................... 38

The perspective parameters for ground based ATC ........................... 42

The performance measures of GA-1 ....................................... 45

The performance measures of GA-2 ....................................... 45

The convergence map of GA-1, the percentage of lost and converged alleles ....... 46

The Convergence map of GA-2, the percentage of lost and converged alleles ...... 46

The performance measures of GA-3 ....................................... 48
The two aircraft scenario ................................................ 48

The performance of GA-3 in the turning A/C example ........................ 50

The performance of GA- 1 in the turning A/C example ........................ 50
51A solution distribution of GA-3 ..........................................
51A solution distribution of GA-3 ..........................................

The "skewed" peaks (Part B) with respect to the distance metric (Part A) can lead to
52selection errors .......................................................

The shared visible volume and the camera distance ........................... 53

The differences in the size of peaks can cause replacement errors ................ 55

The three aircraft scenario ............................................... 56

The performance of the best members of GA-3 and GA-4 in the three aircraft

example ............................................................. 57

The population of GA-3 at a time of 150 seconds ............................ 58

The population of GA-4 at a time of 150 seconds ............................ 58

The running variance of the angular parameters of GA-3 and GA-4 in the three

aircraft example ....................................................... 60

The performance of the best member of GA-4 to GA-8 ........................ 61

The running variance of the inclination parameter in GA-4 to GA-8 .............. 61

The running variance of the azimuth parameter in GA-4 to GA-8 ................ 62

The running variance of the field-of-view parameter in GA-4 to GA-8 ............ 62

The experimental scene with the manual viewpoint controls .................... 67

The critical selection volume display ...................................... 68

vii



6.10

6.11

6.12

6.13

6.16

6.14

6.15

6.17

4.3 A summary of the experimental results by scene type and optimization level ....... 72

5.1 The judgment errors of the ego-parameters: viewing azimuth, viewing inclination and

viewing distance, as a function of the viewing azimuth ........................ 80

6.1 A perspective display with plain graphics ................................... 85

6.2 A plan-view display with simple graphics .................................. 86

6.3 The graphically enhanced aircraft representation in the perspective display and the angle

between trajectories .................................................... 87

6.4 A perspective display with enhanced graphics ............................... 88

6.5 A plan-view with enhanced graphics ...................................... 89

6.6 The map with the questions on the relative aircraft pair situation and a sample traversal

path, indicating the pen clicks ............................................ 92

6.7 The experiment data-sets ................................................ 93

6.8 The mean number of hits as a function of the display type and the aircraft load ..... 95

6.9 The mean number of false-alarms as a function of the display type and the aircraft

load ................................................................ 95

The probability of a violating aircraft pair to be hit at a high aircraft load level,

decomposed by the presence of vertical speed ............................... 96

The probability of a violating aircraft pair to be hit at a low aircraft load level,

decomposed by the presence of vertical speed ............................... 96

The estimation and prediction errors of the ground distance between aircraft ...... 97

The estimation and prediction errors of the relative aircraft position .............. 97

The subject confidence level in estimating the aircraft pair situation .............. 98

The error in estimation of the angle between aircraft trajectories ................. 99

The error in the estimation of the time-to-equal-altitude of the aircraft pair ........ 99

The full scale tablet map, as it was used in the experiment .................... 103

viii



List of Tables

3.1 The encoding of the solution parameters ................................... 43

3.2 The parameters of GA- 1 and GA-2 ........................................ 43
52

3.3 The parameters of GA-3 ................................................
3.4 The parameters of GA-4 ................................................ 59

3.5 The parameters of GA-5 through GA-8, and their difference with respect to GA-4.. 63

6.1 The question answered by each click of the sample path ....................... 92

: ix





•" Abstract

This research project deals with an on-line dynamic method for automated

viewing parameter management in perspective displays. Perspective images are

optimized such that a human observer will perceive relevant spatial geometrical

features with minimal errors. In order to compute the errors at which observers

reconstruct spatial features from perspective images, a visual spatial-perception

model was formulated. The model was employed as the basis of an optimization

scheme aimed at seeking the optimal projection parameter setting. These ideas

are implemented in the context of an air traffic control (ATC) application. A

concept, referred to as an active display system, was developed. This system

uses heuristic rules to identify relevant geometrical features of the three-dimen-

sional air traffic situation. Agile, on-line optimization was achieved by a specially

developed and custom-tailored genetic algorithm (CA), which was to deal with

the multi-modal characteristics of the objective function and exploit its time-

evolving nature.
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Two series of part-task experiments were conducted, in which active air traf-

fic controllers participated, as well as Aerospace Engineering students, who

acted as a control group. Abstracted air traffic scenarios were presented to the

subjects, who were required to perform spatial tasks that were designed to mea-

sure the level of their spatial awareness and comprehension. In the first experi-

ment, still images of static scenarios were presented and the experiment task

demanded comprehension of the current geometrical state. In the second exper-

iment, moving images of dynamic scenarios were presented and the task

demanded comprehension of both present and future geometrical states. A

novel approach was used to evaluate the subjects' judgement capabilities using

an interactive routing chart, presented on a data tablet.

The results clearly show that the spatial awareness of the operator improves

with the level of optimization of the viewing parameters, with complex scenes

benefiting most from the optimization. Moreover, the performance of the sub-

jects with the optimally chosen viewpoints was found to be significandy better

then the one with their own manually chosen viewpoints or with two-dimen-

sional plan-view displays. Enhanced graphics in the form of velocity vectors and

altitude predictors aided in the spatial comprehension of scenes, with the biggest

improvement for the optimized perspective images. Subjective evaluations

revealed that the judgment of spatial features in the optimized perspective dis-

plays was as easy to the users, as it was in the plan-view displays.

The experimental results prove that perspective displays with viewing

parameter optimization are an effective means of delivering spatial information.

This means that the optimal manner to transfer the required spatial information

to the operator, is by means of an optimized perspective display, of which the

objective function is configured such that it correcdy reflects the operator's task.
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"Overview.

1.1 Scope of the Research

This final report describes the development and experimental evaluation of an

advanced perspective display format for enhanced spatial perception, and its

implementation for Air Traffic Control (ATC). Pictorial perspective formats por-

tray more naturally the three-dimensional world than other schematic display

formats, e.g. planar displays, and hence they are potentially better suited to dis-

play three-dimensional information. In particular, perspective displays can more

genuinely represent the air traffic information in an airspace than is possible in

the conventional plan-view displays currently used in ATC. Regarding the

human operator as an information processor, the research is focused at optimiz-

ing the information transfer and retrieval of three-dimensional data from human

interfaces.
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1.2 Background and Literature Survey

1.2.1 State of Air Traffic Control

While perspective displays have a broad range of applications, the concepts in

this research are demonstrated for specific ATC applications. Since the ATC

task demands the operator to have a great deal of understanding of the dynamic

spatial situation, this task constitutes a challenge for the design of spatial infor-

mation displays. A summary of the state of ATC is provided, with particular

emphasis on the spatial aspects of the ATC task.

The Task: Safety and Efficiency

The air traffic control system is responsible for managing the air traffic, which

consists of a complex mixture of commercial, general, corporate and military

aviation. The system is required to maintain a high level of safety while effi-

ciendy providing the capacity to handle an ever increasing number of flights

(NRC 1997). A projection made by the FAA (Perry 1997) states that by the year

2015 there could be a major aviation accident every 7 days. The projection is

based on the anticipated growth of air traffic, combined with an accident rate

that has been statistically flat at 10-7 accidents per flight hour in commercial

flights for the past 15 years (Pelegrin 1998).

Guaranteeing minimum separation between aircraft is the primary means

for ensuring safety. The minimum separation is defined in the horizontal and

vertical dimensions, creating a cylinder of space around each aircraft. The sepa-

ration criteria dimensions vary in different regions of the airspace and under dif-

ferent flight conditions. Increasing the safety level at the current technology

would mean increasing the separation distances between aircraft. Alas, this

would compromise the system's second goal, efficiency. The goal of efficiency is

fourfold; maximizing the number of flights, minimizing delays, which are

defined as the difference between a flight's scheduled time-of-arrival and it's esti-

mated time-of-arrival had there been no other traffic; minimizing fuel consump-

tion; and minimizing impact to the environment.

The process by which efficiency is met is more complex and constrained

than the process by which safety is ensured. The maximum possible capacity is

usually limited by the rate-of-arrivals at airports, particularly at large hubs. The

number of gates, the number of runways and the speed at which an aircraft can
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clear the runway, all dictate the constraints on an airport's capacity, which is

defined by the number of flights it is able to receive per unit of time. The termi-

nal area air traffic controller's goal is to optimize the traffic flow, by fining-up the

aircraft for final approach and delivering them at regularly spaced time inter-

vals, meeting airport capacity constraints. Several obstacles are to be overcome:

1) Aircraft cannot be "stacked" before the arrival airport, to be delivered as

soon as a slot is available. To realize airport capacity, departures and

upstream speed changes need to be strategically scheduled well in

advance. Optimization is limited by the ability to predict uncertain fac-

tors that influence the flight schedule, e.g. head-winds.

2) Wake vortices, following the passage of an aircraft, force the controllers

to maintain greater separations on the final approach, in particular for

heavy aircraft.

3) Sudden changes in weather may force changes in airport configuration,

e.g. dosing or reversing runways, or force the rerouting of air traffic.

The air traffic system is continuously pressured for increased efficiency in its

management of the spatial traffic flow. This system relies on the skills of its con-

trollers and their ad-hock problem-solving ability, to address the sometimes-con-

flicting pressures for safety and efficiency.

Free Flight

Since today's air traffic fonows fixed routes, controllers mainly monitor the

route intersection points, and safely guide aircraft through them. This situation

is depicted in Figure 1.1. Controners receive aircraft data form the ATC radar

and verbally communicate commands to pilots. The controllers mainly rely on

their ability to identify troublesome flow patterns before they become hazardous

and attempt to apply a standard set of procedures to resolve these situations.

But this pattern may change with the introduction of "free flight" (RTCA 1995).

The free flight program is aimed at providing a safe and efficient flight oper-

ating capability while maximizing the airspace capacity. Under free flight,

depicted in Figure 1.2, pilots are free to choose their path, altitude and speed, in

real time. The only restrictions imposed on them are that separation is main-

rained, restricted air space (such as military space) is not entered, and airport

capacity is not exceeded. Aircraft are to be equipped with modern navigation

Overview :
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Hgure 1.1: The standard ATC scenario, as is practiced today.
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equipment, e.g. GPS, and transmit their vehicle state and intention data, via

data-link, to neighboring aircraft and to the ground controllers. This data is dis-

played on the flight-deck of each aircraft, and is used by the flight-crew to

resolve conflicts by themselves without controller intervention. This concept,

often referred to as airborne separation, poses new flight-deck related questions

which will be discussed later. The ground based controllers must have the data

of all aircraft in their controlled airspace displayed to them. Their task is to

monitor the air traffic and to ensure that the limitations are not violated. Two

spatial volumes are defined about each aircraft: the minimum separation vol-

ume, referred to as the protected zone, and a larger volume, enveloping the pro-

tected zone, referred to as the a/err zone. Controllers intervene in case an aircraft's

alert zone is violated, controlling the aircraft involved in the violation, until the

situation is resolved.

Free flight has great potential for efficiency as each aircraft can choose its

optimal flight conditions. To successfully monitor the complex traffic flow that

free flight presents, controllers must, foremost, maintain a good situation aware-

ness. Situation awareness is best defined as "the perception of elements in the

environment within a volume of time and space, the comprehension of their

meaning, and the projection of their status in the near future" (Endsley 1995).

In ATC tasks, this amounts to an understanding of the current and future trajec-

tories of all aircraft within a sector, some understanding of the representation of

traffic about to flow into the sector, awareness of other relevant conditions such

as weather, and an understanding of how all these factors affect the achievement

of the ATC goals and constraints (NRC 1997).

For a controller to maintain situation awareness, a good mental model of

where relevant events are likely to occur is necessary, so that selective attention

can be allocated to sampling relevant parts of the display (Adams, Tenny and

Pew 1995; Stein 1992). The predictive component of situation awareness is

dependent on the spatial working memory's ability to "compute" likely trajecto-

ries based on current aircraft state, intended plans and aircraft dynamics. When

multiple aircraft move in three-dimensions, and vary in air speed, the prediction

task loads the controller's processing capacity to the utmost and limits the reso-

lution with which the future state of traffic in the airspace can be visualized.

Such a crowded, complex and heterogeneous airspace is envisioned under free

flight. In order to support and maintain situation awareness, a 'good' display

Overview "
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Figure 1.3: A TRACON controller station showing a radar scope,
source (NRC 1997).

should aid the controller in anticipating future situations and support attention

allocation to the right place at the right time (Sarter and Woods 1995).

Current Displays

The radar display, shown in Figure 1.3, constitutes the primary source of visual

information for the controller. The radar detects a return signal from anything

in the sky and displays it on the scope in a two-dimensional plan-view represen-

tation. Additional information is received from aircraft equipped with transpon-

ders; this information includes aircraft identity and possibly the barometric

altitude, if the aircraft is quipped with a proper transponder.

Overview , 9



When the ATC computer has a flight plan associ-

ated with the identity code transmitted by the aircraft,

a data tag containing the aircraft's call sign, barometric

altitude (if the aircraft is equipped) and ground speed

will be displayed on the controller's radar display, as is
Figure 1.4: A data-tag.

depicted in Figure 1.4. A symbol at the end of the line

extending from the data tag, represents the computer's estimation of the aircraft

position. In addition to aircraft symbols, a terminal radar approach control

(TRACON) display also contains landmarks, obstacles, feeder gates (which are

"ports" through which traffic is received to the terminal approach area) and run-

ways. Such a display is presented in Figure 1.5. The display is updated every 4

seconds, the radar's sweep time. In Figure 1.6 an En-Route control center dis-

play is presented. En-Route control centers are responsible for traffic between

TRACON stations. This display differs from a TRACON display in that it

does not contain raw radar returns and hence is more synthetic, and includes

different auxiliary data such as radio beacons and navigational aids. On some

En-Route displays, a set of equal-time cross-hatched lines behind the aircraft

symbol represent its past trajectory.

The Pilot's Point-of-View

The pilot's objectives do not always coindde with the controller's objectives.

Pilots are only concerned with one aircraft, whereas controllers are concerned

with a population of aircraft that are spread over a large area. A pilot usually

wants to fly the aircraft along the most efficient path, e.g. along a great circle,

using tail winds, or at the most efficient altitude, e.g. "cruise climb".

Free flight will give the pilot the freedom to choose the optimal flight path,

but the pilot must monitor the aircraft's surrounding airspace, a task which is

new to the pilot. Free flight can be characterized as flying under "electronic

visual flight rules" (Perry 1997), i.e. it confers on aircraft under instrument flight

rules the same freedom of movement as those under visual flight rules today.

This means that the pilot must be able to obtain from the electronic display at

least the same level of situation awareness of the surrounding airspace as that

obtained visually in the visible airspace. The challenge in designing a flight-deck

display for free flight is that the display must present the information in a form

the pilot can easily comprehend while being occupied with the primary task of

10
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Figure 1.6: A traffic display in En-Route control centers, source (NRC 1997).

piloting the aircraft.

There currendy exist no standards for free flight display. Nor do operational

versions of this display exist. Several formats and technologies for a flight-deck

display were examined in the literature (Azuma, Daily and Kxozel 1996), includ-

hag stereoscopic displays, alert zone and protected zone displays and various

flight trajectory enhancements. O'Brien and Wickens (1997) examined two

forms of a perspective format and two forms of a 2D format. Pilots were asked

to steer clear of obstacles in the form of one intruding aircraft and a single

weather front. No consideration was given to the selection of viewing parame-

ters in the perspective displays. In these tests, the 2D displays exhibited superior

performance. Van Gent et al. (1998) confronted a crew in a simulator with vari-

ous free-flight scenarios containing multiple aircraft at high traffic loads. The

crew was provided with a navigational plan-view display showing the surround-

ing traffic. The simulation results show that the pilots gazed at the navigational

display 47o/0 of the time. This figure reinforces the need for an effective flight-

deck display in which the air traffic situation can be perceived quickly.

The quality of the solutions selected by pilots in resolving conflicts was
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Figure 1.5: A plan-view ATC display at a TRACON center,
source (NRC 1997).
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examined by Ellis and McGreevy (1987). Multiple aircraft scenes were pre-

sented to pilots in a cockpit display of traffic information (CDTI), viewed per-

spectively from a viewpoint slightly behind and to the side of the pilot's own-

ship. Pilots chose more maneuvers that involved both vertical and horizontal

motion using this display than when viewing a plan-view display. This experi-

ment demonstrated the advantage of the perspective display, which stems from

its natural representation of the three-dimensional world.

1.2.2 The Impetus to Perspective Displays

Conventional ATC displays represent a plan-view of the air traffic area. The

advantages axe that the interpretation of the ground-referenced aircraft position

is straight forward and all viewed areas are "weighted" with equal importance.

In contrast, perspective displays represent the view of a 3-D scene from a well

chosen vantage point, naturally integrating ground position and altitude of the

aircraft.

Perspective displays are not without their pitfalls. Badly chosen viewing

parameters might lead to disorientation of the operator, or impair the operator's

spatial awareness. They may also result in clutter, exclusion of aircraft symbols

from the view, or ambiguities in determining spatial positions. Perspective dis-

plays tend to bias the allocation of the operator's attention to nearby, centrally

viewed areas on account of distant areas in the periphery.

Perspective displays have been attempted in many applications such as tele-

operators (Chiruvolu, Hwang and Sheridan 1992), the presentation of a spatial

flight-path (Grunwald 1984), spacecraft trajectory planning (Grunwald and Ellis

1988), air traffic control (Burnett and Barfield 1991) and data visualization

(Wickens, Merwin and Lin 1994). The appeal of the perspective display format

stems from its natural appearance when portraying the three-dimensional world.

The appearance of perspective images is affected by the choice of viewing

parameters and the choice of visual display enhancements, such as intensity

depth cueing or the addition of reference lines. Selection of these factors has a

profound impact on the observer's ability to comprehend the spatial layout, or

to carry out the required task (Ellis et al. 1991; Kim et al. 1987). Often, a display

designer needs to know how to present spatial data such that the user's under-

standing of certain geometrical features will be best. In interactive displays, the

viewing parameter selection problem is commonly solved by handing over the
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parameters selection task to the user by means of sliders or other manual con-

trols for setting all or some of the viewing parameters; the initial viewing param-

eters are arbitrarily chosen. The main disadvantage of this approach is that the

user is now burdened with an additional task, which may be critical in high

workload situations (Jasek, Pioch and Zeltzer 1995). Additionally, to select the

viewing parameters effectively, the user must have a good spatial understanding

of the controlled parameters.

Several recent comparisons were made between conventional 2-D and 3-D

display (O'Brien et al. 1997).Jasek et al. (1995) compared the ability of operators

to predict collisions in three aircraft scenarios when using perspective displays

and when using split plan-view/side-view 2-D displays. There was no systematic

approach for setting the viewing parameters of the perspective displays. Gener-

ally, the 2-D displays had an advantage over the 3-D displays.

In an attempt to automadcally select the "best" perspective viewing parame-

ters for a teleoperator arm positioning and orientation task, Das et al. (1989)

used a simple heuristic rule which was based on the arm's position relative to

near-by objects. The operator could dedde when to switch to new viewing

parameters. The results of this experiment showed that the performance of well

trained operators was best when they manually selected their viewpoints, more

than with the automatically selected viewpoints or from a fixed viewpoint in

space. The choice of viewpoints g-ready affected the performance of the opera-

tors. This work demonstrated the importance of well chosen viewing parame-

ters, but lacked a functional method for their selection. Such a method should

consider human spatial perception mechanism and abilities.

1.2.3 Spatial Perception in Perspective Displays

Perception phenomena in perspective displays are well documented as early as

La Gournerie (1859). When human observers reconstruct three-dimensional

layouts from two-dimensional monoscopic displays certain judgement errors are

inherent in the process. The Ames room (Ames Jr. 1925) strikingly demon-

strates the human reconstruction mechanism by tricking it. Due to the special

geometrical arrangement of the room, an observer falsely assumes he/she is

viewing a rectangular room, with a rectangular tiled floor. This assumption is so

dominant, that when a person walks across the room, the observer is forced to

believe that the person is actually growing in size! Many works compared and
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documented spatial judgements errors and their dependence on various per-

spective viewing parameters (Barfield and Rosenberg 1995; Ebert and Mac-

M_iUan 1985; _ et al. 1991; Gregory and Ellis 1990; Kim et al. 1987;

McGreevy and Ellis 1986).

One of the attempts to model the human reconstruction mechanism (Farber

and Rosinski 1978) assumes the observer reconstructs a "virtual space" for the

viewed image. According to this model, this virtual space is distorted when com-

pared with the actual space since the observer falsely assumes he is viewing the

image from the center of the perspective projection. Since the unique reconstruc-

tion of a three-dimensional layout from a single, monoscopic, two-dimensional

perspective image is impossible, every model must assume the observer uses

some additional knowledge which was not obtained from the image. The Farber

and Rosinski model assumed the observer has knowledge of the depth of each

point in the image and does not explain the source of this knowledge. Being

deterministic, the model requires a basic imperfection in the viewing geometry

and thus cannot explain judgement errors that occur when no such imperfection

exist.

Additional models with similar characteristics are reviewed by Sedgwick

(1991). These models differ from each other in the assumption of what prior

knowledge the observer uses and what data is measured from the image, e.g.

Lumsden (1983) assumed the observer is familiar with object size, Ellis et al.

(1987) assumed the observer knows the true length of each line-of-sight and

Purdy (1960) assumed texture gradients are being measured from the image. In

spite of these differences, most of these models converge to the same results.

Different is the "familiarity cue" model (Grunwald, Ellis and Smith 1988).

This model deals with "real-world" vision and not vision from a perspective

image. The fundamental assumption of this model is that the observer uses

apr," knowledge of certain attributes of the viewed objects, referred to as

"familiarity cues". For example, an observer that views a filed floor might

assume the files are rectangular. The assumption that a priori knowledge is used

in the reconstruction process is well established (Ames Jr. 1925; Wickens 1992).

The observer perceives an object having the same familiar attributes and that

would have generated lines-of-sight that best match the perceived lines-of-sight

had it been the true object. Errors stem from noisy measurements of the angles

of the perceived lines-of-sight. The statistics of the judgment errors were
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obtained using a Monte-Carlo process.

The familiarity cue assumption is the basis for the spatial perception model

developed in Chapter 2 which differs from the Grunwald et al. model in two

aspects: (1) A reconstruction process from a two-dimensional image rather than

from a real-world is modeled, (2) the error statistics are calculated directly,

divesting the need for a lengthy Monte-Carlo simulation.

The perception of motion, both for ego-motion and exocentric object

motion, has been the subject of separate research (Rogowitz and Allebach

1990). Most models for the spatial perception of motion agree that it is per-

ceived from a sequence of static images (Sakaino and Sonehara 1996; Zacharias,

Miao and Warren 1995), a notion which is enforced by the fixation movement

behavior of the eye (HacisalLhzade, Stark and Allen 1992). In particular, Zachar-

ias et al. (1985) successfully used Kalman faltering to model human perception of

ego-motion by assuming it is estimated from noisy measurements of a spatially

distributed optical flow-field. However, the model of Zacharias was only able to

explain the perception of ego-motion, and did not suggest how to treat object

motion.

1.3 Proposed Concept

To utilize the full potential of perspective displays, proper viewing parameters

must be used, in conjunction with adequate graphical symbology, to present the

"best" perspective image of the viewed geometry. The "best" image is the one in

which the spatial information that is relevant to the operator is presented dearly

and unambiguously, i.e. the operator can interpret the spatial information with

the least errors, thus increasing the operator's ability to solve spatial problems.

Since the airspace is constandy changing, the parameters of the "best" image

should be changed in accordingly. Hence, an interactive display system is pro-

posed that will monitor the airspace and update its display parameters in agree-

ment with the evolving air traffic situation; such a system is hereafter referred to

as an active perspective display system.

Several questions were addressed in order to design and implement an

active perspective display:
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1) What needs operator attention?What information is relevant and is extracted

by the operator, and what is the relative priority of each information

item?

2) How can the quality of a perspective image be evaluated? Can the human opera-

tor effectively comprehend the spatial information in the image and men-

tally reconstruct the 3D situation?

3) How can the optimal perspective scene be created? Given the evaluations of the

second question and the priorities of the first, what is the best perspective

setting?

Since the air traffic situation is dynamic, the answer to the first question will

change with time as various parts of the airspace change their geometry,

together with their relative importance. Knowing how to solve the second ques-

don, enables to rate a set of alternative perspective scenes and assign score to

each one of them, which reflects their quality. The temporal nature of the first

question leads to a conclusion that the score of each alternative is a function of

the time. The third question can be restated as a time changing, multi-dimen-

sional opfimizadon problem, as the set of best scoring alternatives at each

instant of dine is sought.

The goal of the active display system is to improve the overall comprehensi-

bly of the scene, and in an ATC implementation, to improve the performance of

the controller. This is achieved by:

• Finding a compromise between the accuracy at which the different geo-

metrical features can be estimated.

• Preventing clutter, or exclusion from view of any aircraft symbol and

assuring all the relevant aircraft have a clear view.

• Directing the user's attention to most important features by allocating

them to a "prime" area of the display.

• Relieving the user from the need to manually choose the viewing param-

eters and thus enabling the user to concentrate on the main task.
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Figure 1.7: The structure and the data flow of the active display system.

1.4 Outline of the Active Perspective Display System

The active display system concept, as it was conceived and implemented, is

composed of several components, depicted in Figure 1.7. A complete active dis-

play system for ATC should present the essential spatial information for routing

air traffic flows, which consists of the aircraft positions, air routes, landmarks,

radio beacons, geographical obstacles and possibly also weather-front informa-

tion. Since this research project was focussed on evaluating the feasibility of the

active display concept, rather than developing a fully fledged ATC display, a

simplified system was implemented. This system, in which only geometrical air-

craft data were displayed, was configured for the part-task experiments that

were conducted.
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1.4.1 Scene Analyzer

The scene analyzer examines the geometrical data to be displayed. Expert ATC

knowledge, in the form of heuristic rules, is used to identify the relevant geomet-

rical features and their relative priorities. The expert knowledge was extracted

from studies which established the type of information controllers use when

dealing with air traffic (Amaldi, Boudes and Cellier 1996; CourteixKherouf

1998).

1.4.2 Optimization Engine

The optimization engine finds the best viewing parameter setting for the infor-

marion identified by the scene analyzer, such that a human observer can extract

the relevant information from the perspective display with the least errors in

perception. The optimization engine is the heart of the active display system and

provides an answer to the latter two questions posed in Section 1.3, i.e. it

dynamically finds the best image by rating alternative images in the process.

The current implementation applies a genetic algorithm (Goldberg 1989) as it

was found suitable for the multi-modal and time-evolving characteristics of the

objective function (Shaviv and Grunwald 1997).

The focus of our research effort was on the development of the optimization

engine, on the formulation of the static perception model and its extension to

moving images, and on the development of the genetic algorithm used for the

optimization.

1.4.3 Decision Algorithm

The decision algorithm continuously compares the optimal viewing parameters

computed by the optimization engine with the current parameters in order to

decide whether a change is appropriate. The decision is made by considering

the score difference between the two parameter settings, the time elapsed since

the last change and other factors such as the user activity and user preferences.

The aim is to avoid agitation of the display and to reduce the impact of the

change on the operator's situation awareness. A decision algorithm is required

in particular when the viewed information is dynamic, as is the case in an ATC

implementation.

The level of automation (Sheridan 1987), i.e. the mode of operation, can be

set by user preferences. In a hilly automatic mode, the system will initiate a
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viewing parameter change whenever it finds it appropriate. This mode may dis-

turb some operators, and is problematic if the operator is not gazing at the dis-

play all the time, e.g. in a flight-deck implementation. In a semi-automatic mode

the system will request user authorization to perform a change, or wait a grace

period enabling the operator to veto. In all modes, the user should be capable to

manually override the change. The automatic changes must be reflected in the

state of all manual viewing parameter controls.

1.4.4 Path Planner

The path planner determines the path, along which the viewing parameters are

to be changed. Since discontinuities in the viewing parameters may impair the

observers' spatial orientation, i.e. the observer's understanding of the viewpoint

position in space and the viewing direction, the role of this component is to per-

form the requested change by sequencing gradual transitions, striving to main-

tain the highest level of spatial orientation during the change. The current

implementation uses simple heuristic rules (Grunwald 1996). The gradual tran-

sitions are introduced by simulating as if the motions are controlled by a well-

designed servo control system. The functions, realizing these motions were

referred to as "slewing functions" and are extensively treated in the report of the

previous year's research.

2O

1.5 Organization of this report

As mentioned earlier, our research was focussed on the dements of the optimi-

zation engine. The heart of the optimization engine is the spatial perception

model, presented in Chapter 2. Chapter 3 introduces genetic algorithms and

describes the genetic algorithm that was used in the optimization. The active

display system was evaluated in a part-task experiment, described in Chapter 4,

demonstrating the basic feasibility of the concept and the validity of the image

scoring method. Chapter 5 presents a spatial perception model for dynamic

images, which is based on the static model of Chapter 2. This model enabled

the second part-task experiment, described in Chapter 6, that evaluated the

observer's ability to understand future situations in moving images and to

extract dynamic quantities, such as aircraft velocities, thus providing a more

complete examination of the observer's situation awareness. Chapter 7 con-

dudes this report and provides final remarks.
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• Spatial Perception Model from Static0

Q

• Perspective Images

2.1 Introduction

Earlier work, in the framework of our coopera-

tive efforts, has dealt with the development of

mathematical models for the spatial percep-

tion of a human observer. These models ana-

lyrically describe the process, by which the

human observer reconstructs three-dimen-

sional layouts from perceived two-dimensional

images. The motivation for the development of

these models was triggered by the need for understand-

ing this process, when dealing with the development of spatial instruments and

spatial displays. The design of a synthetic perspective display requires the choice
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of the viewing parameters, i.e. viewpoint, viewing direction, field-of-view, as

well as the geometrical representation used to portray each object. These

choices have a profound impact on the observer's ability to comprehend the spa-

tial layout, or to carry out the required task (Ellis etal. 1991; Kim etal. 1987). As

has been mentioned in Section 1.2.3, the judgment errors made by human

observers estimating spatial features from perspective images, strongly depend

on the viewing parameters. The systematic judgement errors have been

accounted for by several deterministic models known in literature, which

explain the errors in a specific geometry, and hence are difficult to generalize or

use as a design tool.

The model presented in this chapter deals with the random aspects (non-sys-

tematic) judgement errors. It is based on familiarity cues (Grunwald et al. 1988),

and treats vision from computer generated, wire-frame, perspective images. An

analytical expression for the statistics of the judgment errors is derived, making

this model a suitable means to rate images in an on-line display application.

2.2 General Description of the Model

22

2.2.1 The geometry

The general geometry of the generation of a perspective image of a three-dimen-

sional scene is described in Figure 2.1. The viewed objects consist of N vertices,

of which the coordinates in the world coordinate system are
W W

x j = (x , y_,zW)r;j = I...N. In case the image is produced by a camera, the

objects are part of the real world, whereas in computer generated images, the

objects are modeled in a database. The viewed objects consist of M edges. Each

edge connects two vertices having the indices [vl(k),v2(k)];k = 1...M, where

each index v.(.) is in the range 1...N.

The image is generated by perspectively projecting the world coordinates x_ '
-j

on the image plane P. This is done in two steps. First, the coordinates x_j are

transformed into the coordinates x_ of the station point system. This system has

its origin at the center of the perspective projection. The x-axis points towards a

point-of-regard (POR) and defines the viewing direction. The POR is at a view-

ing distance V from the station point. Figure 2.1 shows the orientation of the

station point system S with respect to the world system. The angles _ and 0

are the azimuth and inclination of the viewing direction, respectively. The angle
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Station Point

Image Plane --- __

-- Vertex

_Edge

yW

Z w

Figure 2.1: The geometry of a perspective image.

is the viewing twist, and is considered zero when the y-axis is parallel to the

world x TM, yW plane. The world-to-station point transformation is given by:

x_j ([_][O][wl)r(x_j-
0

(2.1)

where _r is the coordinate vector of the POR in the world system, [,], [0] and

Iv] are sequential rotation matrices about the x, y and z axes, respectively.

Second, the image plane vectors _ are computed by intersecting the lines-

of-sight, i.e. the lines connecting the station point with each vertex, with the

image plane. The image plane is perpendicular to the viewing direction at a cUs-
s

tance l from the station point, where the yP and zp axes are parallel to the y

and z s axis, respectively. The image plane coordinates of the perspective projec-

tion are then:

l(Yj! s. TP

\Xj XjJ

(2.2)
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Figure 2.2: The spatial perception process.

where these coordinates are given as fractions of half the screen height h. The

and l determine the vertical field-of-view angler= 2tan-l(_).parameters h

2.2.2 The Reconstruction Process

The basic assumption underlying the spatial perception model is that the

observer has a pr/vn" knowledge of certain geometrical features of the viewed

objects, referred to as familiarity cues. The familiarity cues essentially parame-

trize the object geometry, hence the world coordinates of the object vertices can

be written as a function of the parameter vector ¢ :

24

w

x j = Y=i(_c) (2.3)

where 5rj(.) are N familiarity cue functions, i.e. one function for each vertex,
w

establishing a one-to-one mapping between c_ and x_j.

It is assumed that the observer deduces a correct set of familiarity cue func-

dons from a first interpretation stage of the image. For example, if the observer

is viewing the building of Figure 2.2, the observer might assume the building is

composed of a rectangular parallelepiped and topped by a pyramid, the parame-

ter vector ¢ might consist of the width, height and depth of the parallelepiped

and pyramid, and the familiarity cue functions will express the coordinates of
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each vertex in terms of c using the knowledge that the parallelepiped is com-

posed of perpendicular planar surfaces.

Since the geometry which produced the image is unknown to the observer,

the geometry parameters that are required to reconstruct the image need to be

estimated. It is assumed that the observer stipulates that the station point lies on

an axis perpendicular to the image plane, passing through its center. This

assumption is reasonable when the observer is aware of the image frame orien-

tation (Cutting 1991). Hence, the parameters estimated by the observer can be

written as the vector:

= (W, O, @, 1¢, D, _r, _c)
(2.4)

which is composed of the station point system orientation, the field-of-view

angle, the viewing distance, the POR position and the familiarity cue parameter

vector, respectively.

The vector _ is estimated by the observer by searching through all possible

values for the one that would produce a layout, which is most likely to be the

true one. The different layouts obtained by assigning a value to __ are hereafter

referred to as virtual layouts. For each virtual layout, the observer constructs a _r-

tual image by the perspective projection of Eqs. (2.1), (2.2). Since the virtual image

is the perspective image that would have been seen had the virtual layout been

the true layout, the model assumes that the observer selects the virtual layout

with the virtual image which best matches the true image.

The errors in the perception process can be classified as deterministic errors

and stochastic ones. Deterministic errors result in a bias on the observer's spatial

judgments, and are caused by misleading hypotheses that the observer might make

concerning the image geometry, or the displayed objects. For example, the

observer's famifiarization with an object similar to the viewed one, but of differ-

ent size or proportions, may cause the observer to assume the viewed object is

similar to the one the observer is familiar with. It has been reasoned that incor-

rect hypotheses due to size familiarization cause a higher frequency of rear-end

collisions with small cars (Ebert et al. 1985). Incorrect hypothesis are modeled

by assuming the observer has a preference for certain combinations in the val-

ues of _.

Stochastic errors introduce a statistical distribution in the judgement errors
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of different observers, as well as in the successive judgment trials of the same

observer. This distribution in judgement errors is incorporated in the model by

assuming it is caused by matching errors between the virtual images and the

true image. This causes the search process for the best virtual layout to be

imperfect such that, with a certain probability, an erroneous virtual layout may

be selected. More precisely, it is assumed that for each virtual layout the

observer calculates a matchhTg cost, that rates how well its virtual image matches

the true image. However, the observer has random errors in calculating the vir-

tual layout's matching cost. Hence, a virtual image that does not have the lowest

matching cost may be wrongfially selected. This is equivalent to a random selec-

tion process in which the probability of a virtual layout to be selected is

inversely proportional to its matching cost.

2.3 Mathematical Formulation

2.3.1 The Matching Cost

The matching cost of a virtual image reflects the extent to which a virtual image

differs from the true image. The matching cost, in case no misleading hypothe-

ses exist, is defined as zero when the virtual image matches the true image, and

it increases the less the virtual image resembles the true image.

It is assumed that the observer detects the edges in the image. Hence, the

observer attempts to match the edges of the virtual image with the edges of the

true image. It is assumed that the matching accuracy is proportional to the edge

length. Accordingly, the matching cost of a virtual image is defined as the sum

of the differences between each one of the virtual edges and its corresponding

true edge, normalized by the length of the actual image edge. Assuming the cor-

respondence problem is solved, i.e. the observer correcdy established which

edge of the virtual image and in the true image are corresponding, the matching

cost may be written as:

M , T

)(_-) = k_x'l (ek - _ek)_(-ek - -e'k) (2.5)
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where _ek is the kth edge vector in the 2-D virtual image and is equal to:

P P (2.6)
e k = X_vl(k ) -- X_v_(k) ,

and e_'k denotes the corresponding actual edge seen in the true image. The vari-

ous 2-D virtual image vertices _.) are computed from _ by first using the famil-

iarity cue relations, Eq. (2.3), to obtain 3-D virtual world coordinates, and then

calculating their perspective projection, Eqs. (2.1),(2.2).

By defining __j= xf - x_'j as the difference between the positions of the jth vir-

tual vertex projection and its corresponding vertex in the true image, and by

using Eq. (2.6), Eq. (2.5) can be written as:

T

(2.7)

Eq. (2.7) reflects the matching goal of an observer who does not have mis-

leading hypotheses about the viewed geometry. The misleading hypotheses are

expressed as a preference towards the hypothesized combination of values of _z,

and are modeled by adding a term to the matching cost of Eq. (2.7) that

increases the matching cost the further the virtual layout's parameters are from

the hypothesized values:

j = ) + _rw8 (2.8)

where J is the corrected matching cost and 8 expresses the combination of val-

ues of __ towards which there is a preferences. It is assumed 6 can be written as

a linear combination of __"

8 = B_ + Q Z. (2.9)

2.3.2 The Error Model

The Bias

As stated earlier, the observer attempts to find the virtual layout which yields

the minimum matching cost. Let X0 be the true parameters and Z_,, the one that

Spatial Perception Model from Static Perspective Images 27



minimizes the cost of Eq. (2.8). The difference Z_m-g0 constitutes the bias.

Assuming the bias is small, we can expand the gradient of a" to a Taylor series:

aJ_ oz]z_lxo+(_-m--_°)a _ + 0(__m___0 )2. (2.10)

The minimum is obtained by equating Eq. (2.10) to zero, and discarding the

higher order terms, yielding the following approximation:

rOJ(_2J] -1 ]

z_m-_z0: L t, .J J_ 0"
(2.11)

In the design of perspective displays, it is desirable that the average judg-

ment error, i.e. the bias, be small. To this end, the left hand side of Eq. (2.11)

must be minimized.

The Variance

In order to obtain the variance of the errors, a shape for the probability density

function of the matching cost J has to be assumed. Using the probability den-

sity function of J, the variance of _ can be calculated.

As was previously stated, a virtual layout has a probability to be selected

which is proportional to its matching cost. If Ja = J- Jm is defined as the differ-

ence between the virtual layout's matching cost and the minimal matching cost,

then the probability that the selected layout has a matching cost difference less

than a certain Ja increases with ]a, tl_ is characteristic of an exponential prob-

ability density function. Hence, the probability densi W function that shall be

assumed for ]a is

X
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1-Jalk
f j(Jd) = _e Jd > 0

0 Ja< 0

(2.12)

where _. is a constant parameter of the distribution. If absolute judgement errors

are required, _. could be evaluated from experiments with human observers.

For the purpose of comparing the quality of several images, the exact value of _.

is irrelevant.

To calculate the variance of the error in the estimation of the i th element of
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X_,the distribution of the ith element of -_X= X_- X_m,denoted as fz,(_i), has to be

calculated. It is assumed that the observer is only attempting to estimate Zi

while all other elements of _Xare known perfectly. This assumption is equivalent

to assuming that errors due cross relations between the parameters may be

neglected, in view of small estimation errors.

2 isBy definition, the variance _,

2 _ - z ") (2.13)t_X; = _i f g,(Zi dgi

where fz,(Xi) is the density funcdon of Xi- Since Jd = J(X) - Jm, fx,

according to (Papoulis 1984):

fz,d)_ = fj(Jd(X))l_-_ildxi"

By substituting Eq. (2.14) into Eq. (2.13), and using Eq. (2.12) we get:

relates to fj

(2.14)

]d

2 = _7 x_I_Jle--_dXi" (2.15)

Eq. (2.15) can easily be evaluated by approximating the integrand as a Tay-

lor series expanded around Xm and neglecting higher order terms. Since Ja is at

a minimum at Xr_, its Taylor expansion reduces to:

-2_2j I (2.16)Jd = Xi "7-5

[MI reducesto:The Taylor expansion of _/

Substituting Eqs. (2.16) and (2.17) into Eq. (2.15) and integrating, yields:

2 -1
(2.18)

Spatial Perception Model from Static Perspective Images 29



30

It is interesting to note that a relation similar to Eq. (2.18) can also be

obtained using a numerical minimization analogy. Assume the matching process

is carried out in a fashion similar to a numerical minimum search algorithm.

The search is discontinued once a certain precision has been reached, i.e. J is at

a distance _./from its minimal value. Since .i is at a minimum at Zm, USing Tay-

lor expansion, the distance to the true minimum _X, can be shown to be

,_2 = Aj(b2]/bX2)-I. This relation is reminiscent of Eq. (2.18) if one substitutes
2

o x -o AX2, X _ zxa' by analogy. While this analogy is not mathematically rigorous,

it provides some insight into the result of Eq. (2.18).

Eq. (2.18) states that the variance of the estimation error is proportional to

the inverse of the curvature of the matching cost surface at the estimated param-

eter value. Using the numerical minirm'zation analogy, this can be compared

with finding the minimum of a sharp sink, i.e. a large curvature, versus that of a

shallow depression, i.e. small curvature. In the first case, the minimum can be

easily found, meaning the image is accurate and can only be interpreted with a

unique spatial geometry. In the latter case, the exact location of the minimum is

harder to find meaning many possible geometrical layouts can yield similar

images.

2.4 Analytical Model Evaluation

To test the new model, a comparison was made with results obtained by using

the Grunwald et al. model. The Grunwald et al. model was also tested against

experimental human observer performance data. The test scene that was used is

similar to that used in Grunwald et al. (1988) and is essentially an abstraction of

scenes encountered in certain types of Air Traffic Control displays (McGreevy et

a/. 1986).

The scene consists of two small spheres which rest on poles extending from

a ground grid. One sphere is 3 meters above the ground, and the other is

4 meters above the ground. The ground distance between the spheres is

4 meters. The size of the ground grid is 10 meters. It was assumed that the

familiarity cues of the observer are that the poles are perpendicular to the

ground plane, and the poles bottom edge ties in the ground plane.

The objectives of the observer are to judge the azimuth of one cube with

respect to the other, the altitude difference between the cubes and the ground

distance between them. Predictions to the expected judgement errors were pro-

u
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duced using both models.

The comparison revealed that the two models yield close predictions. For

example, Figure 2.3 shows the results for the variance of the ground separation

judgement error at different viewing directions. The predictions of the Grun-

wald et al. model are represented as circles in part A of the figure when viewing

at a 45 ° inclination, and as crosses in part B when viewing at a 60° inclination.

The errors are plotted against the viewing azimuth angle. The error bars repre-

sent one o of the prediction distribution as obtained from the Monte-Carlo run.

The solid lines are the predictions obtained by the current model for the same

viewing inclination.

The new model also reproduced the judgement error behavior observed in

other works. For example, Figure 2.4 shows an expected judgement error

behavior that is similar to the one observed by McGreevy and Ellis (McGreevy

et al. 1986), which was referred to as a "braided sine wave". To explain this

behavior, McGreevy and _ had to assume that the observer has knowledge

of the length of the lines-of-sight emanating from the image. In the Grunwald et.

al model, this effect was called the "telephoto lens" effect, referring to the fact

that the observer has a wrong assumption about the zoom angle of the camera,

used to generate the scene. It is well-know, that when observers view scenes

through a telephoto lens, the depth of the object is underestimated. Also, in the

new model, this behavior was reproduced, by assuming that the observer has a

false notion of the field-of-view angle, i.e. the observer assumes a priori an incor-

rect field-of-view angle. In Figure 2.4, an azimuth angle of 45 degrees is overesti-

mated (a positive error) for the narrow-angle field-of-view of 40 degrees and

underestimated for the wide-angle field-of-view of 70 degrees.
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2.5 Summary

The model presented offers a new and straightforward explanation to the spa-

tial perception process, which is general and geometry independent. The model

is based on the Grunwald et al. model which was formulated for real-world

scenes; considered only vertices in the scene, and required a computation-inten-

sive Monte-Carlo process to evaluate the variance of the judgement errors. The

current model treats perspective images; considers both points and edges of the

image, and provides a closed-form analytical solution. This makes the model

suitable for an on-line application, such as the active display system. The dosed-

: Summary



-5
0 90 180 270 360

Azimuth

Figure 2.4: The bias in the judgement error of the relative azimuth angle between the two

spheres, as a function of the viewing azimuth angle, for different field-of-view angles.

form solution which was obtained has a fundamental implication; the variance

of each geometrical feature is relative to the curvature of the cost function the

observer uses to match the image. Using this result, the model can easily be

extended to include other visual attributes like shaded light, lighting or textures,

by modifying the matching function.
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• TheOptimizati0n Engine

3.1 Introduction

As mentioned in Chapter 1, the optimization engine, being at the heart of the

active display system, is responsible for finding the optimal projection parameter

setting. This optimal setting is found by optimizing an objective fimction, which

rates the perspective image according to the expected judgment errors, which an

observer would make when interpreting the image. These expected judgment

errors, in turn, are predicted by the spatial perception model. This objective

function, which is described in Appendix A, yields a complex, multi-modal opti-

mization surface. Furthermore, since the ATC scene is inherently time-varying,

this surface changes its shape with time. Finding the global optimum of a com-

plex multi-modal and time-varying optimization surface is a non-trivial task!

We have considered a number of"dassical" optimization techniques, such as

gradient methods and second-order schemes. These schemes have the advan-
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tage of quickly and accurately converging to the global optimum, provided the

"initial guess" is in dose vicinity of this global optimum. Since in our problem, is

it is far from being guaranteed that the initial guess will be in the vicinity of the

optimum, these classical optimization schemes have the tendency to "lock" on

local minima and converge to incorrect solutions. Thus, these schemes lack

robustness and the ability to deal with the time-varying nature of our problem.

To solve our multi-modal, time-varying optimization problem, we have cho-

sen a genetic algorithm. These algorithms, with their close analogy to nature,

are robust and flexible, and have the unique ability to adapt themselves natu-

rally to changes, evolving in time. A general review of genetic algorithms is pre-

sented in Section 3.2, followed by the special adaptations and techniques that

were implemented for the active display problem.

3.2 Synopsis of Genetic Algorithms

A brief overview of the workings of genetic algorithms (GAs) is presented. The

purpose of this section is to provide the necessary background to comprehend

the work, which is presented subsequendy. For a more detailed description of

genetic algorithms, the reader is referred to Goldberg (1989).

3.2.1 Mechanism of a Simple GA

The GA mechanism is based on a metaphor to genetic evolution, and will be

explained using an illustrated example. Suppose one wants to find the maxi-

mum of the 2-D function:

f(x, y) = Ix- Yl (3.1)

in the region:

0 < x < 15 (3.2)

0<y< 15

As a first step, possible solutions which are vectors in 2-D with components

in the range specified by Eq. (3.2) have to be coded to a string representation.

This can be done by coding the components of the solution vectors as binary

strings, and concatenate these strings one after the other forming one long

binary string, as illustrated in Figure 3.1. The string representation of the solu-
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tion is called a chromosome. Each letter in the chromosome is called a gene and

the possible values a gene can have are called alleles.

I

010{11110

x--4'y=14

Figure 3.1: A Chromosome representing a possible solution.

GAs work with a population of solutions. Initially, the population is filled

with random members; Figure 3.2 shows an initial population with four mem-

bers. Each member in the population is assigned a fitness which reflects how the

solution it represents compares with the rest of the population. In Figure 3.2 the

fitness of each member was calculated by normalizing f, the function value of

the solution from Eq. (3.1) by the average function value of the population _.

x,y Chrom. f fitness
1. 4,14 01001110 10 1.48

2. 13,14 11011110 1 0.15

3. 0,11 00001011 11 1.63

4. 11,6 10110110 5 0.74
f=-6.75

Figure 3.2: The initial population and its fimess assignment according to the

function value of each member f and the average function value _.

As in nature, GAS use stochastic

rules to spawn the next generation.

First, members are randomly

selected to pass to the next genera- 1_.63___'15 -"--'- -"-_- 1,3,4,3

tion with a probability relative to Figure 3.3: The selection process.

their fitness. This process can be

thought of as spinning a weighted roulette wheel, as is illustrated in Figure 3.3.

Selection appfies pressure on the population towards convergence to a single

solution.

Second, a preset proportion of members

is randomly chosen to mate. Mating pro-

duces new members from existing ones by

crossing-over the chromosomes of the two

parents at a random cross-over point, illus-

01001

00001
____11_ 01001 011

1 00001 110

Figure 3.4: A crossover.
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trated in Figure 3.4. Cross-over applies pressure on the pop-

ulation towards divergence, by uniformly distributing

alleles in the population.

Third, each bit in the population is ran-

01u x011 domly reversed with a low mutation prob-

1 ability. The probability of mutation is

preset and is one of the parameters that has to be decided when implementing

a GA, along with the population size and cross-over proportion. Selection elimi-

nates alleles from the population which do not contribute to a higher fimess, the

role of mutation is to preserve alleles from being lost by reinserting them to the

population so their usefulness can be retested. Setting a high rate of mutation

decreases the convergence rate of the GA, and decreases the probability it will

converge to a local maximum.

Finally, a new generation is created. Analysis reveals (Holland 1975) the new

population average function is guaranteed to be statistically higher than the

average function value of the previous generation. An insight to the GA mecha-

nism can be gained from the "two-armed bandit" problem. A finite number of

coins is to be invested in a slot machine with two arms, each giving an unknown

average payoff, with the intent of maximizing ones profit. A plausible strategy is

to spend a proportion of coins to measure the payoff of each arm; then, play the

rest of the coins on the aim that exhibited the higher payoff. Spending more

coins to measure the payoff, decreases the probability the rest of the coins will

be played on the wrong hand, but also decreases the number of coins for reap-

hag the profit. Holland (1975) showed that GAs solve the two-armed bandit

problem (more generally, a k-armed bandit problem) in an optimal manner, i.e.

GAs will allocate the population members in an optimal compromise between

exploring new knowledge and exploiting gained knowledge. This trait makes

GAS less susceptible to local maxima. While most of the population members

will concentrate on the region of the solution space exhibiting the highest objec-

five value, some effort will be made to probe additional regions of the solution

space.

Since their inception, GAs have been used in a variety of engineering appli-

cations, such as recursive adaptive filtering (Etter, Hicks and Cho 1982), struc-

tural optimization (Goldberg and Samtani 1986) or aircraft landing strut weight

optimization (Minga 1986).
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3.2.2 Advanced GA Techniques

Selection Revisited

The fitness in Figure 3.2 was calculated direcdy from the function value of each

member. This makes selection pressure dependent on the scaling of the objec-

tive function, e.g. the fitness of members in the population will be different if

their function values are between 0-10 or between 100-110. An alternative is to

assign fitness to members according to their rank in the population and not

direcdy from their function value (Whidey 1989).

Instead of selecting all the members that pass to the new generation accord-

ing to their fitness, as was done in Figure 3.3, a preset proportion can be selected

at random, this proportion is referred to as a generation gap (DeJong and Sarma

1992). A generation gap usually increases the GAs exploratory power by letting

offsprings interact with their parents.

Cross-Over Revisited

A different cross-over scheme than the one described in

_%_I0_,-" Figure 3.4 was used in the optimizadon engine, called a two-

_:_ point crossover. Instead of one crossover point, two crossover
ea _

e'OO0_3,q_'" points are chosen, and the string part of the two chromo-

somes between these two crossover points is exchanged.

This is identical to considering the chromosome as a ring instead of a linear

string. Two-point crossover has better characteristics than single-point crossover

or other multiple-point crossover schemes when optimizing non-linear func-

tions, since it facilitates the GA in finding relations between the parameters of

the solution (Eshelman, Caruna and Schaffer 1989; Spears and DeJong 1991).

Dominance and Diploidy

The solutions in Figure 3.2 were coded as a sin-

gle chromosome string. In higher life forms, chro-

mosomes contain two sets of genes, rather than

just one; known as diploid chromosomes as

opposed to a haploid chromosome. Redundant

allele values are resolved through a mechanism

110il
--*10011

10001

Hgure 3.5: A diploid chro-

mosome is resolved using
dominance.

called dominance; at each locus one allele takes precedence over the other. By

deciding that a 0 is dominant over a 1, and by introducing a new ], marked as
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Sharing

i, which is dominant over a 0, a diploid chromosome may be coded in a GA

(Hollstien 1971), as is demonstrated in Figure 3.5.

Using diploid structured chromosomes enables the GA to maintain unused

alleles in an inactive state, and reactivate them once they become useful again.

Thus, diploidy offers an additional mechanism to preserve alleles that is more

robust, and less disruptive to GA convergence, than mutation. It can be practi-

cal for optimizing functions with changing values, and hence require the GA to

maintain its probing power and continuously try new solutions.

Most of the genetic literature in nature tends to concentrate on diploid chro-

mosomes, while virtually all work on GAs concentrates on haploid chromo-

somes. This is primarily for simplicity since diploidy involves an overhead in a

GA. Most studies of dominance considered it as a method to store structures in

abeyance in periodic functions (Goldberg and Smith 1987), in spite its apparent

suitability for time-evolving functions.

Niche Formation

Genetic algorithms can be configured to locate several local maxima. A member

group of the population that is located on a distinct function peak is said to be

forming a niche. To create niches, Holland (1975) suggested, by metaphor to

nature, to modify the allocation of fitness such that all members that share the

same peak in the objective function divide among themselves the function value

of the peak. Thus, a member can have a high fitness if it rests on a peak with a

low function value if that peak contains few other members. The difficulty is in

determining whether two members share the same peak or are on two nearby

peaks.

A practical scheme that directly uses the sharing metaphor to induce niches is

detailed in Goldberg and Richardson (1987). In this scheme, a sharing function is

defined to determine the neighborhood and degree of sharing for each member

in the population. The sharing function is such that it is equal unity if the two

members are identical, and monotonously decreases to zero the more the mere-
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Deterministic

Crowding

bers are different from each other. The sharing funcdon between members

and j, used by Goldberg and Richardson is:

os(i, j) = 1 - d(i, j) <

0 d(i, j) > o

(3.3)

where d(i, j) is the distance between the members which is defined as zero if the

solutions are identical, and non-negative otherwise, c_ is a constant and o is a

preset distance threshold.

The fimess fi of member i is derived from the unshared fitness f(xi) by:

f(x i)
fi = N (3.4)

_._ s(i, j)

j=l

Thus, the more members there are in the vicinity of the ith member, the

higher the sum of its sharing function, and the lower is its fitness.

Two options for defining a distance are suggested by Goldberg et al. (1987),

and are used throughout GA literature. Phenotype distance is defined as the Euclid-

earl distance between the members' parameter vectors d(i, j) = Ilx_i-x_jlI. C o pe
d_tance is defined as the Hamming t distance between the two members' chromo-

some strings.

The workings of the sharing principle depends on the parameter o which is

the minimum distance between function peaks that enables their location. Set-

ting o requires knowledge of the function topology, and is further discussed in

Appendix B.

A different approach achieves niche formation through an intervention in the

evolution cycle of the GA, named deterministic crowding (2VIahfoud 1992). In this

method a new generation is created by first selecting at random a pair of members

from the population. Second, the selected members are mated and the offsprings

are considered as candidates for reinsertion to the population in place of the par-

ents. Each offspring is compared with the parent whose distance to it is smaller,

and replaces it i£ its fimess is higher. Deterministic crowding was shown to be an

4O

t The Hamming distance is defined as the number of different letters between two strings.
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effective method for maintaining multiple peaks and ensuring population diver-

sity, since it basically "kills" crowded member (see Appendix B for further dis-

cussion). Deterministic crowding rids of the necessity to preset a sharing

distance o, and hence is more independent of function topology. However, a

distance still has to be defined to determine which offspring is candidate to

replace which parent, Mahfoud (1992) used phenotype distance for this pur-

pose.

3.3 Why Use GAs?

Several factors made GAs an attractive choice for the active display optimization

problem. The objective function, which is the quality of the image as a function

of the viewing parameters, is highly non-linear, it may contain several modes

and may have discontinuities. GAs are fit to handle such objective functions.

Additionally, GAS do not require derivatives which are difficult to calculate for

the objective function.

The content of the airspace is continuously evolving in time, and the optimi-

zation engine is required to find optimal viewing parameters on-line, keeping up

with the pace the airspace changes. By exploiting the GA's evolutionary nature

and configuring it to track over time the objective function, rather than initiating

a new search for the optimum each time events change, changes in the objective

function can be detected quickly. Such a GA will strategically place its popula-

tion members in an optimal compromise between seeking the current optimum

and anticipating future optima. In this manner the GA will use past knowledge

on the structure of the objective function when searching for a new optimum.

Moreover, it can be ascertained that each maximum in the objective function

is related to a pair or a group of aircraft (the spatial situation of which is consid-

ered as deserving operator attention). Aircraft position changes continuously in

the airspace, thus any objective function shape that relates to aircraft position

changes continuously in time. The conclusion is that a new global maximum

will most likely arise from a former local maximum that grew "steeper", while

the former global maximum became "shallow". An optimization algorithm that

keeps track of the local maxima can instandy detect such an event.

A reason against using GAS is their slow convergence rate compared with

gradient based methods, typically it is exponential with the number of function

evaluations, referred to as the number of trials. This handicap is circumvented
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Aircraft Symbol Camera

Point of Regard

Figure 3.6: The perspective parameters for ground based ATC.

by configuring the GA to continuously monitor the airspace, thus having only

to find the changes in the function. The slow convergence rate has an effect only

on the initial "start-up time" of the algorithm.
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3.4 GAs for the Active Display Optimization

3.4.1 Encoding the Parameter Set

In order to represent possible solutions in the GA, the parameters of a perspec-

five projection need to be encoded as a chromosome string. The parameters

chosen to define a perspective projection, see Figure 3.6, are: The coordinates of

the point-of-regard (POR) Px, Py; the azimuth angle _ and the inclination angle

0 of the viewing direction; the viewing distance D, i.e. the distance between the

center of the perspective projection and the POR; and the field-of-view (FOV)

angle K.

The parameters were encoded as a Gray* binary string, each was encoded in

a given range and precision, according to the expected parameter range and the

required solution accuracy, these are summarized in Table 3.1. The parameters

* Gray encoding are better suited for GA optimization than binary encoding, since in Gray
encoding adjacent integers always differ by a single bit. Gray codes are generated by XOR-
ing each digit in the binary code of a number with the digit one place left of it. Thus the
Gray code of the integer 11 (binary 1011) is 1110, and of the integer 12 (binary 1100) is
1010.
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Viewing azimuth _ 0 - 360 Deg 0.25 Deg

Viewing inclination 0 0 - 90 Deg 0.25 Deg

Px, Py of POR -150 - 150 NM 2 NM

Viewing distance D 0-150 NM 0.5 NM

Field-of-view _: 10 - 80 Deg 0.1 Deg

Table 3.1: The encoding of the solution parameters

were concatenated to form one string in the order: re, ®, Px, Py, D, r. yielding a 45

bit string. This order was chosen to place parameters which were assumed to

have a related effect on the objective function closer together in the string, thus

facilitating the GA in finding any such relation.

3.4.2 Constructing the GA

Population size 300

Selection Deterministic with stochastic reminder.0.3 Generation gap.

Mutation rate le-3

Crossover Two-point crossover at a rate of 0.8.

Population size 50

Selection Deterministic with stochastic reminder. No generation gap.

Mutation rate Ie6

Crossover Two-point crossover at a rate of 0.6.

Table 3.2: The parameters of GA-1 and GA-2.

As stated, the goal is to create a GA that does not converge but continuously

explores for new evolx6ng maxima. To study the effect of the various GA com-

ponents, the GA is constructed in three steps. First, a simple GA, similar to the

one presented in Secdon 3.2.1 is configured and evaluated. Second, diploidy is

introduced and compared with the performance of the haploid GA. Third, an
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appropriate niche formation technique for the objective funcdon is developed

and employed to form the final CA.

The Simple GA

A simple GA is configured for a high exploratory capability and a delayed con-

vergence. This is achieved by a large population size, a high cross-over rate, and

a moderate generation gap. This GA is referred to as GA-1. For comparison, a

second GA was configured for fast convergence, referred to as GA-2. Table 3.2

summarizes the parameters of GA-1 and GA-2.

To test the GAs performance on a realistic, dynamic scenario, an airspace

simulation was extracted from true recordings of air traffic data from the Den-

ver ATC Center (Dofighi 1996), representing a moderately busy ATC center.

The simulation included 20 aircraft which were all in an organized traffic flow,

except for five "rogue" aircraft that violated a separation criteria sometime dur-

ing the first four minutes of simulation. This scene is of similar characteristics to

the scenes used in the experiment described in Chapter 6.

Two GA performance measures are shown in Figures 3.7,3.8; they are the

result of a 4 minute simulation. The first performance measure is the objective

function value of the best member in the population. This is the best solution

the GA holds, and is the solution that is passed over to the decision algorithm to

consider a possible parameter change. The second measure is the off-line perfor-

mance which is defined as (Goldberg 1989):

T

P(T) = l_.max.[f(1)...f(r)} (3.5)
1

where T is the number of trials, each trial being one objective function evalua-

tion, and f(-) is the value of the objective function at each trial. Thus the off-

line performance is a running average of the best population member across tri-

als. An increase in the off-line performance indicates the GA is continuously

improving the best member. The x-axis in Figures 3.7,3.8 is the number of trials

and corresponds to the 4 minute simulation time. The different number of trials

between Figure 3.7 and Figure 3.8 is due to a different overhead in managing

the two different sized GAs, and other random factors.

To determine the GA's performance compared with the function's true max-

imum, the true maximum was calculated by "freezing" the airspace at different

-" GAs for the ActiveDisplay Optimization
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Figure 3.10: The Convergence map of GA-2, the percentage of lost and converged alleles.
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times, in intervals of 30 seconds, and letting a GA optimize this statically held

airspace until it converged. These points, marked as triangles in Figures 3.7,3.8,

show that both GA-1 and GA-2 do not reach the true maximum of the dynamic

objective function. Initially GA-2 converges faster and to a higher score than

GA-1, but as the objective function evolves and shifts in the solution space, GA-

2 loses performance abrupdy, while GA-1 sustains a constant performance level,

as is evident by the level off-line performance curve.

An explanation can be obtained from the convergence maps of the two GAs,

Figures 3.9,3.10. These show the percentage of lost and converged alleles for the

two GAs. An allele is considered lost ff it is not present in all the population, e.g.

if in a certain bit position all the population has the value of zero, the "one"

allele at that position is lost. Converged alleles appear in the population less

than a certain percentage. As can be seen, GA-1 maintains a low level of lost

alleles compared with GA-2 that almost immediately converges most of its pop-

ulation. One can conclude that the slow rate of convergence of GA-1 can be

attributed to it allocating a substantial "effort" to maintaining population diver-

sity for further exploration. GA-2, on the other hand, concentrates all its efforts

in achieving a higher score causing it to lose its population diversity and hence

its probing powers.

Introducing Diploid Chromosomes

Figure 3.9 indicates that the convergence of GA-1 was not stopped, but only

slowed down. Longer simulation times show that eventually GA-1 converges its

population, in particular at times of "low activity" when the objective function

does not change much in time. By increasing the rate of mutation in GA-1, con-

vergence may be further reduced, at the price of performance. Instead, diploidy

can be used.

Table 3.3 summarizes the parameters of GA-3, a diploid GA which similar

parameter values as GA-2, except for a larger population. The performance

measures of GA-3 on the simulation run are shown in Figure 3.11. It is evident,

from Figure 3.11, that this GA converges initially as fast as GA-2, but unlike

GA-2, is able to continue tracking the objective function and reach a perfor-

mance level which is much closer to the function's true maximum and at times

even reaches it.

In a diploid GA, an allele is considered lost if both haploid halves of the dip-
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Figure 3.11: The performance measures of GA-3.

A/C Velocity: 700 knots
Revolution Period: 18 minutes

Turn Rate: 20 Degrees/Minute
Turn Radius: 35 Miles

Center of turn
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Figure 3.12: The two aircraft scenario.

loid chromosome do not hold this allele value, i.e. the allele is absent from both

dominant and recessive genes. Examining the allele convergence of GA-3

revealed that zero alleles were lost or converged throughout the simulation.

Tracking a Peak in the Solution Space

To further demonstrate the diploid-GA's ability to track moving peaks in the

solution space over time, a scene was chosen in which there is one major peak

that remains at a constant level and shape, but moves in the solution space. The
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scene consists of an aircraft pair turning about a common center, as is illustrated

in Figure 3.12. The optimal viewing parameters are moving together with the

aircraft, hence the objective function will have a constant-magnitude peak that is

moving in the solution space.

The performance measures of GAd and GA-3 from a simulation of two

complete turns of the aircraft pair are presented in Figures 3.13,3.14. As can be

seen from Figure 3.14, the simple GAd quickly looses its ability to probe the

solution space and rapidly loses performance. GA-3 on the other hand, manages

to maintain a constant performance level throughout the aircraft motion. A

slight increase in the performance level can be noted roughly at trial 70000, this

is when the aircraft pair commences its second turn. This increase in perfor-

mance can be attributed to the diploid GA memory mechanism. By storing alle-

les in a dormant state, it is capable of storing solution structures in abeyance,

which the GA can reuse once they are useful again.

An additional indication of the behavior of GA-3 can be seen from

Figures 3.15,3.16. These figures depict the solutions the GA holds as miniature

cameras in space from a top-down view. The aircraft pair, depicted as white dots

connected with lines to the ground grid, can be seen at two different simulation

times. In these figures it is visible that the solution population tracked the air-

craft pair through their motion.

The Niche Formation Technique

Diploidy ensures that GA-3 will not loose genetic material, i.e. will not lose alle-

les, and hence GA-3 can respond to gradual changes in the function's peak.

Albeit, as can be seen from Figures 3.16,3.15 the solution population is still con-

centrated at one region of the solution space. Should a new peak emerge in a

new location, e.g. a third aircraft enters the airspace, GA-3 will not be able to

locate it. For this, niche formation will be used.

Since deterministic crowding (see page 40) showed superior niche formation

capabilities in literature, it was selected as the basis for the niche formation GA

to use in the active display optimization. However, when applied to the active

display problem, this method failed to maintain the function peaks, as will be

demonstrated later.

Deterministic crowding is dependent upon defining a distance between

members. The GA literature that deals with niches always uses either pheno-
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Figure 3.15: A soludon distribution of GA-3

Figure 3.16: A soludon dmmbudon of CA-3
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A: Equal-distance lines B: Function contour

X r X r

Figure 3.17: The "skewed" peaks (Part B) with respect to the distance metric (Part A) can
lead to selection errors.

Population size

Selection

Mutation rate

Crossover

Chromosomes

100

Deterministic with stochasticreminder.No generation gap.

1e-6

Two-point crossover at a rate of 0.6.

Diploid structure.

Table 3.3: The parameters of GA-3.
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type or genotype distance functions (Deb and Goldberg 1989; Mahfoud 1992;

Miller and Shaw 1995; Spears 1994). These works tested their GAs on simple,

synthetic function that had all their peaks both uniformly and symmetrically

distributed in phenotype space (parameter space). However, in the active display

problem the peaks are far from being uniformly nor symmetrically distributed,

as some of the parameters represent angles and some distances.

Non-symmetrical peaks in parameter space render phenotype distance inef-

fective for niche formation, as is demonstrated in Figure 3.17. Remember that a

deterministic crowding GA generates a new population by choosing two mem-

bers for mating, and compares the fitness of each offspring with the parent clos-

est to it in order to possibly replace it in the population. Assume M and P

(mamma and papa) are two members of a GA each representing a two-dimen-

sional solution. M and P are mated, to produce two offsprings, A and B (Abby

: GAS for the Active DisplayOptimization
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Figure 3.18: The shared visible volume and the camera distance.

and Benjamin?). Part A of Figure 3.17 shows equal (phenotype) distance curves

around M and P, according to which, A's fimess will be compared with P's and

B's fitness will be compared with M's. Part B of Figure 3.17 shows possible

equal-function-value contour lines and demonstrates how a replacement error

may occur in this scheme, causing one of the peaks (the peak on which B and P

are situated) to lose its members. This example shows that for effective niche

formation, the equi-distance lines should be parallel to equal-function-value

lines, i.e. the peaks should appear as close as possible to spheres under the

parameter mapping induced by the distance fuzlction. A similar analysis can be

carried out for genotype distance.

A distance function was sought which bares more relation to the parameters'

geometrical meaning. To demonstrate the complexity of defining such a dis-

tance, consider defining the distance between two members as being inversely

proportional to the common visible volume between the two vie_ng projec-

tions represented by the two members, see Figure 3.18. While this distance

seems to capture the essential geometrical meaning of the viewing parameters, it

is not complete as it does not distinguish between viewpoints that view the same

The OptimizationEngine ;
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volume from different orientations. It is also computation intensive therefore

hindering on-line performance.

Both a computational simple and geometrically meaningful distance was

sought, which led to the definition of the camera distance (see Figure 3.18) as the

Euclidean distance between the camera positions the two solutions represent.

The camera positions of the two solutions is:

,54

b+°c°s°c°s • ,,z = = |rr + Dcos0sin_/t (3.6)

L rz + DsinO J

where r,,, ry, rz are the coordinates of the POR, D is the viewing distance, and

V, 0 are the azimuth and inclination angles of the viewing direction, respectively,

so that the camera distance is d = llx_l-x_2_.

Eq. (3.6) is not a one-to-one mapping of the parameter space, i.e. it is enough

that two members represent the same camera position for the distance between

them to be zero. As a consequence, two niches which are identical in viewpoint

position but differ only in viewing direction will not be created. However, the

GA will hold effectively different viewing angles of the same visible volume.

Also note that the field-of-view angle has no effect on the camera distance, as a

consequence the GA is free to choose the best field-of-view regardless of niching

considerations.

Functions that contain peaks of different size may also give rise to replace-

ment errors. Such a hypothetical situation is demonstrated in Figure 3.19 for a

one dimensional function. Like in the previous example, offspring A is consid-

ered for replacement of parent P and offspring B considered to replace parent

M. After these replacements take place, peak b loses a member for the larger

peak a. Note that the size which is relevant is the "base" of the peak and not its

"height".

This problem was solved by introducing fitness sharing when comparing

offsprings and parents. The effect of sharing on deterministic crowding is to

favor offsprings/parents which distance themselves from the main population

concentration. Thus, if a large peak attracts many solutions, their fitness will

decrease, essentially causing a balance between the peak size and the number of

population members it attracts. This new niche formation method is hereafter

: GAs for the Active Display Optimization
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Figure 3.19: The differences in the size of peaks can cause replacement
eITors.

referred to as deterministic crowding with sharing.

The shared fitness of each offspring which awaits insertion to the population

is calculated by applying Eq. (3.4) using all members of the population in the

summation, except for the parent which is a candidate for replacement. The par-

ent's shared fitness is calculated using only the members in the population but

not the offsprings.

Simulation with Niche Formation

To demonstrate and compare the niche formation technique, an example sce-

nario with three aircraft was created such that its objective function will have

pronounced peaks, illustrated in Figure 3.20. Initially aircraft a and b are flying

head-on while aircraft c flies in parallel. As the scene progresses, the aircraft turn

such that in the final state, aircraft b and c are flying head-on while aircraft a is

flying parallel to them. The objective function of this scenario, initially has one

peak, associated with viewing pair (a,b), the height of which decreases with time.

A second peak, associated with viewing pair (b,c) slowly emerges and with time

grows in height, finally becoming the new global maximum.

A deterministic crowding with sharing GA was configured, named GA-4,

and is summarized in Table 3.4. To demonstrate the necessity of niche forma-

tion, the performance of the best member of GA-3 and that of GA-4 when opti-

mizing the three aircraft scenario is illustrated in Figure 3.21. As can be seen,

until a time of 150 seconds, when only one peak exists, GA-3 achieves a higher

score. Once the second peak arises, the performance of the two GAs begins to

balance, with GA-4 showing the benefits of its more diverse population towards

the end of the period when the two peaks are present. At a time of 310 seconds,
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Figure 3.20: The three aircraft scenario.

when only the second peak remains, GA4 shows its superior behavior and its

ability to quickly recuperate from the disappearance of one peak from the objec-

tive function by achieving a much better performance than GA-3.

A "visual" inspection of the population distribution at a time of 150 seconds

is presented in Figures 3.22,3.23 which represent the GAs' solution population

from a "birds' eye" view as "black flocks" of tiny cameras in space. The aircraft

are represented as white dots connected to the ground grid with drop lines. In

Figure 3.22 the population of GA-3 is seen to dearly form a single duster of

solutions that axe focused on the first aircraft pair. In contrast, in the population

of GA4, Figure 3.23, one can identify several clusters of solutions, at least one

can be identified as focusing on the secondaircraft pair. It is evident that looking

only at the performance of the GA members is not sufficient, since the goal is

not just to produce the best scoring members, but also to position the members

such that new maxima can quickly be located. In other words, we strive to

maintain population diversity.

To reflect this second goal, a new measure was defined, referred to as the

; GAs for the Active Display Optimization
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Fig-are 3.21: The performance of the best members of GA-3 and GA4 in the three air-
craft example.

running variance, such that the running variance 0 i oft_he ith parameter is:

1} i =

I_rlXk 12

T -2

T_ Xk, i - i

k=l :=

T 2

(3.7)

where xk, i is t.he normalized value of the i th parameter of the k tb member evalu-

ated by the CA. The parameter is normalized such that its value range is

between zero and unity. The running variance indicates the amount of variabil-

ity which is maintained in each parameter through the GA's evolution.

A running variance of the three parameters representing angles, the azimuth

angle, the inclination angle and the field-of-view angle of GA-3 and GA-4 are

depicted in Figure 3.24. The angular parameters were chosen as a representative

of all parameters. The running variance in Figure 3.24 is normalized by 1/12

which is the variance of a uniformly distributed random variable in the range

between zero and unity. From Figure 3.24 it is evident that GA-4 maintains a

better population diversity in all parameters.

To compare the ability of GA-4 to maintain population diversi W with that of

other niche formation techniques, several other GAs have been defined, each

differing from it in one aspect. Table 3.5 summarizes the parameters of these
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Figure 3.22: The population of GA-3 at a time of 150 seconds.
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Figure 3.23: The population of GA-4 at a time of 150 seconds.
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Population size 50

Selection Deterministic crowding with sharing

Mutation rate le-6

Metric Camera distance

Chromosomes Diploid structure

Table 3.4: The parameters of GA-4.

GAs, highlighting the difference of each with respect to GA-4.

The performance of the best member in each of GA-4 to GA-8 is portrayed

in Figure 3.25. The normalized running variance of the azimuth, inclination and

field-of-view parameters is depicted in Figures 3.27-3.28 respectively. From these

figures it is evident that GA-4 is superior both in performance and in population

diversity to any other niching method examined. GA-5 is the only GA which

nearly reaches the performance and population diversity of GA-4. However, the

deterministic crowding mechanism of GA-4 is superior to the selection by shar-

ing mechanism of GA-5 which enables GA-4 to maintain useful population

diversity and react faster to the changes in the objective function. Also note that

GA-8 which uses a phenotype distance could have had some unfair advantage

in the running variance graphs, as the running variance measures variability in

phenotype space. From the poor performance of GA-7 and GA-8 one can

deduce the effectiveness of using the geometrically meaningfi_ camera distance.
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Figure 3.24: The running variance of the angular parameters of GA-3 and GA-

4 in the three aircraft example.
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Figure 3.26: The running variance of the inclination parameter in GA-4 to
GA-8.
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Figure 3.28: The running variance of the field-of-view parameter in GA-4 to GA-8.
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Population size 50

Selection Deterministic with stochastic reminder,no generation gap.

selection based on shared fitness.

Mutation rate le-6

Crossover Two-point crossover at a rate of 0.6.

metric Camera distance

Chromosomes Diploid structure

$imp_erm;!n!_!¢iCtOwd!ng (wRhout shamdfitn }

Population size 50

Selection Deterministic crowding

Mutation rate le-6

Crossover Two-point crossover.

Metric Camera distance

Chromosomes Diploid structure

Population size 50

Selection Deterministic crowding with sharing

Mutation rate le-6

Crossover Two-point crossover.

Metric Genotype distance

Chromosomes Diploid structure

_GA,8_,, ::• _Phenotype d!stance;yersusca_e_.:d!st,,n..,_,,,_,_.._:::::.:::

Population size

Selection

Mutation rate

Crossover

Metric

Chromosomes

50

Deterministic crowding with sharing

le-6

Two-point crossover.

Phenotype distance

Diploid structure

Table 3.5: The parameters of GA-5 through GA-8, and their difference with

respect to GA-4.
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3.5 Summary

Achieving fast convergence for the evolving objective function and a tight maxi-

mum tracking is pertinent not as much because the function is expected to

change rapidly, but due to the on-line nature of the active display system. In a

mode in which the user is involved in choosing the timing of the change, either

by directly requesting a viewpoint change or authorizing one, response time is

critical to achieve a usable system. To this end, an optimization algorithm that

evolves with the airspace was attempted, striving to create an agile algorithm

that uses past knowledge of the state of the airspace to quickly locate the new

maximum, rather than starting a fresh search at each time step. Diploid GAs

have been first tried in a complex time evolving function and have exhibited

their ability to maintain genetic material, enabling them to track time changing

maxima. A new niche forming technique was developed, based on a geometri-

caUy meaning_ distance which reflects the objective function's topology, rather

than using phenotype or genotype distance as is common in literature. In addi-

tion, it was shown that the usage of deterministic crowding together with fitness

sharing yields an effective niche forming GA which can deal with a changing

number of different-sized peaks in the objective function.
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" Part TaskExperiment: Static Images

4.1 Purpose

While the previous chapter dealt with finding the global optimum of a multi-

modal optimization surface, this chapter deals with the question, whether and to

which extent, this optimum indeed reflects the "best" display for the operator.

This question can be reformulated by questioning whether the objective func-

tion that was formulated, accurately reflected the shortcomings in the human

spatial reconstruction process and correctly analyzed the task to be performed.

In order to answer this question, a preliminary part-task experiment was carried

out in which active air traffic controllers were asked to interpret abstracted

three-dimensional static ATC situations. The objectives were:

1) To evaluate the effect of the viewing parameters on the operator's ability

to interpret perspective scenes.
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2) To establish a relationship between the image optimization score and the

operator's performance in interpreting the spatial scene.

3) To compare the operator's performance in interpreting the spatial scene

for automatically and manually chosen viewing parameters.

4.2 Description of the Task

In order to rate the operator's ability to spatially interpret a scene, a task was

designed requiring the operator to judge current separation distances between

aircraft. Although this ability would be highly desirable in a flow control task,

the choice of dais performance score does not suggest that the perspective for-

mat should indeed be used for active flow control. In such a task, accurate

judgements could very well be made with conventional plan view displays. The

experiment consisted of two basic run types.

Criticalpair selection runs measured the operator's ability to judge horizontal

and vertical separation distances. A perspective scene was shown, abstracted

from a hypothetical ATC situation, as in Figure 4.1. The aircraft in the scene are

symbolically represented by horizontally oriented circles, located at the aircraft

positions and connected to a rectangular ground grid by drop lines. The sub-

jects are requested to identify the aircraft pairs that violate a minimal horizontal

and vertical separation criterion. The separation distances are different for each

rl&tl.

The criterion is communicated to the subject in a graphical manner at the

start of each run, as shown in Figure 4.2, separate from the aircraft scene dis-

play. The criterion is displayed as a cylindrical volume, centered about an air-

craft symbol and dropping a shadow on the ground. An aircraft pair is

considered in violation of the criterion when each aircraft is within the volume

of the other.

The volume is displayed with viewing parameters different from those the

aircraft scene is viewed with. The transition between the two settings is done in

a gradual manner resulting in a smooth motion pattern. This scheme was cho-

sen to randomize the appearance of the volume and the motion cues involved in

the transition contributed to a better understanding of the criterion. The vol-

ume display could be recalled by the subject at any instant of the experiment

run by pressing a button.

: Description of the Task



Figure 4.1: The experimental scene with the manual viewpoint controls.
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Figure 4.2: The critical selection volume display.
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V'wwingparameter setting runs served to examine manually chosen viewpoints.

The operator was asked to choose the viewing parameters such that they would

be able to interpret the perspective scene in the best possible way.

Based on previous experience with perspective displays (Grunwald 1996),

the viewing parameter setting scheme was constrained to a preset pattern in

which the viewing axis could be pivoted about a POR located in the ground

plane. Thus, the viewing parameters that could be varied by the operator were:

the azimuth and elevation angles of the viewing axis, the viewing range, i.e. the

distance between the eye-point and the POR, the zoom angle and the location of

the POR. By using ma_z_0u/at0rs integrated in the three-dimensional scene, see

Figure 4.1, each one of these parameters could be set by independent opera-

tions.

4.3 Subject Background, Instruction and Training

Two female and eight male active Air Traffic Controllers participated in the

experiment. Subjects age was between 29 and 46 years. All subjects had

between 4-8 years of TRACON experience and three subjects also had control

tower experience.

The subjects were told that the purpose of the experiment was to evaluate

their ability to interpret spatial scenes. The two types of runs were demon-

strated, during which the subjects were familiarized with the task, the separation

criterion, the method of selecting critical aircraft and the viewing parameter set-

ting method. Following this demonstration the subjects performed a series of 12

aircraft sdection training runs. During the first six runs, the subjects received

both immediate audio and visual feedback on their selections, in the last six

runs, only audio feedback was given. In addition, they also performed six view-

ing parameter setting runs. The instruction, demonstration and training lasted

between one and two hours.

The production included nine viewing parameter setting runs and 90 air-

craft selection runs, and lasted between two and three hours. The available time

to complete each run was limited and a dial in the lower fight comer of the dis-

play, see Figure 4.1, showed the remaining time in minutes and seconds. The

subjects were allowed to terminate the run when they felt that they identified all

critical aircraft pairs.
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4.4 Experiment Design

4.4.1 Independent Variables

The experiment's independent variables were:

1) The aircraft load level, i.e., the number of aircraft that was present in the

scene.

2) The optimization level, i.e. the predicted quality of the viewing parame-

ters, as computed by the objective function.

3) The parameter setting mode: manual or automatic.

4.4.2 Data Sets

Three load levels (20, 35 and 50 aircraft), and three image optimization score

levels (high, medium and low), were considered. For each load level, three dif-

ferent scenes were tested, yielding a total of nine different scenes. Each scene

had 5 critical aircraft pairs. For each scene, three different viewing parameter

settings were computed for each optimization level, yielding a total of 81 differ-

ent settings. Each setting comprised an experimental run. Thus, production

runs included the 81 viewing parameter settings and the nine manual settings.

The the total sequence of 90 runs was randomized, and the subjects were not

told that the runs with their manually chosen settings were also present in the

set.

The objective function consisted of a weighted sum of the viewing qualities

of the ground and altitude separation "t of all the aircraft pairs with a separation

less than twice the selection criteria separation. The inverse of the actual separa-

tion distance was used as a weight, thus the closer an aircraft pair, the more

important it was in the optimization. The familiarity cue model that was used in

the perception model stipulated the observer knows the ground grid is square

and of a known constant size, and that the drop bars connecting the aircraft

symbols to the ground grid are perpendicular to the ground plane. The random

viewing parameters at different optimization levels were generated by randomly

choosing viewing parameters from the solution population history of a genetic

70 : Experiment Design
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algorithm that was configured to explore a large portion of the solution space.

The raw experimental data for each selection run were the identities of the

aircraft pairs selected by the subject, the time needed to complete the run, and

the number of times and the total duration the critical volume was inspected.

Each selected aircraft pair was classified as a hit or a false alarm depending

whether it actually violated or did not violate the criterion. Additionally, the

critical aircraft pairs that were not picked out by the subject were marked as

IlllSSe$.

4.5 Experiment Results

The ratio of hits over false alarm tested using a 2 test on a contingency table.

All the tests were done separately for each one of the three aircraft load levels.

In the 35 and 50 load levels it was found, at a significance level of 0.001, that the

ratio was different for the three optimization levels. In the 20 load level no sig-

nificant difference was found. No significant difference in the ratio was found

between viewpoints of the same optimization level and load level.

The data were further analyzed by performing a Friedman, 2-way, non-

parametric test, and using a Page ordered alternatives test. The distribution of

the data, from all subjects, for each experimental parameter setting (9 runs times

10 subjects) are depicted by the box plots of Figure 4.3. The box extends from

the lower to the upper quartiles of the distribution with a line drawn at the

median. The whiskers, extending from the boxes, represent the rest of the distri-

bution. Outlier points are drawn by "x" marks.

The upper row of Figure 4.3 shows the hit ratio, i.e. the ratio of correct over

total answers. As can be seen in the 20 load level, the optimization does not

affect the hit ratio, while in the 35 and 50 load levels the hit ratio clearly

improves with the optimization level. It also appears that this improvement is

the strongest for the 50 load level.

The second row of Figure 4.3 shows the miss count distributions. An effect

of the optimization level on the miss count was only detected in the 50 load

level at a significance of 0.01, where the high and medium optimization levels

were better then the low optimization.

The third and fourth rows of Figure 4.3 show the distribution of the average

ground and altitude "error distances", respectively. The error distances rate the

severity of false alarms and misses. For these cases, the normalized ground error
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distance is defined as the difference between the pair's actual ground separation

and critical separation, normalized by the critical separation. The ground error

is averaged over all false alarms due to ground error and all misses. The average

altitude error distance is calculated in a similar fashion.

The average ground distance error was not affected by the optimization.

However, at a significance of 0.01, the average altitude error reduces with the

optimization level. This is true for the 35 and 50 load levels. Again, in the 20

load level no significant difference was observed.

The results dearly indicate that the optimization level affects subject perfor-

mance and thus the ability to spatially interpret the scene. The sensitivity of the

altitude error to the optimization level indicates the ability of the observer to

reconstruct the vertical dimension in optimized viewpoints. In contrast, the

insensitivity of the ground error to the optimization level indicates the observer

uses the metric of the ground grid rather then spatially reconstructing.

Furthermore, in almost all scores, a trend is observed in which the more

complex scenes are more affected by the optimization level. A possible explana-

tion is, that for simple scenarios, i.e. the 20 load level, the detection problem is

too simple, so that even from bad viewpoints the situation can be assessed rea-

sonably well, whereas in complex scenes the choice of a correct viewpoint is

more critical.

Figure 4.3 also shows that the performance in the manually chosen view-

points was worse then in the highly optimized ones. This is true for the cases in

which the optimization was effective.

4.6 Conclusions

The results dearly demonstrate that the effectiveness of perspective displays is

highly affected by the choice of viewing parameters. The ability of the operator

to spatially reconstruct scenes generally improves with the level of optimization,

where the strongest performance improvement is for the high aircraft load lev-

els. This indicates that complex scenes in particular, are benefiting from viewing

parameter optimization. This might explain why 2-D displays are at times found

to perform better then 3-D displays when simple scenarios are used, as was

done by Jasek et al. (1995) and O'Brien et aL (1997). A proper comparison

between 2-D and 3-D displays should be done for different load levels and with

images for which the viewing parameters are optimized. The fact that the per-
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formance for the manually chosen viewpoints was inferior to the one for the

optimally chosen viewpoints, indicates the potential advantages of the method.

The simple and abstract optimization function used in this experiment served to

prove the method by which image quality is rated.
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" A Model for Spatial Perceptionfrom
tl

• Moving Images

5.1 Introduction

The model, presented in Chapter 2, dealt with the spatial perception of three-

dimensional layouts from static perspective images. Although this model proved

itself very useful in understanding the human spatial reconstruction process,

and was at the heart of the objective function used in the viewing parameter

optimization scheme, it does not incorporate the time-varying nature of the

ATC task. Therefore, it enables the prediction of judgement errors of current

states only. From the definition of spatial awareness, given in Section 1.2.1, it fol-

lows that the controller is required to judge not only the current aircraft posi-

tion, but also to judge their current velocities and flight paths.To estimate the

controller's perception errors of dynamic scenes from moving images, a

dynamic spatial perception model was formulated. Previous success with using
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a Kalman filter to model ego-motion perception (Zacharias et al. 1985; Zacharias

et al. 1995), inspired us to extend the static formulation of Chapter 2 to an opti-

mal filtering framework, thus enabling the modeling of object motion perception

from moving images.

5.2 General Description of the Model

5.2.1 The Geometry and Dynamics

The viewing geometry is similar to that used in Figure 2.1 of Chapter 2 and its

parameters are the unknown vector Z which consists of the viewing parameters

and the famifiarity cue parameters, as stated in Eq. (2.4). When the viewed

objects are in motion, the vector Z changes with time. The dynamic mode1

assumes the observer is familiar with the kinematics of the motion, and attempts

to estimate its parameters. By assuming the observer uses the dynamic model,

this can be written as

__ = _(a_, t, _(t)) (5.1)

where the function _ is the motkm cue fimction and q is the unknown motion

parameter vector.. The function _, the vector a_ and Eq. (5.1) play an analog role

to the famifiarity cue functions _(.), the parameter vector .c, and Eq. (2.3) of

the static model.

For example, assume that the parallelepiped in the example of page 24 is

growing taller at a rate that the observer assumes to be constant. Then the

parameter vector a might consist of the unknown rate of change and the func-

tion _ will express the relation between the change in the parallelepiped height

and the vector _a.

The observer estimates the vector X = (Z, _a) which contains both the vector

and the motion familiarity cue vector a,

X_ = (¥,O,_,D,r,c_,a_) r. (5.2)

When viewing an air traffic situation with fixed viewing parameters, the deriva-

tives of the viewing parameters, as reflected in the function ff are zero.
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5.2.2 The Reconstruction Process

According to the model, the observer assumes that the motion parameter vector

a may have random variations, which are described by:

a(t) = W_a(t) (5.3)

where w_At) is a zero-mean Gaussian noise process with a diagonal covari-

ance matrix Qa, expressing the parameter rate of change which is expected by

the observer. For example, if the observer assumes the i a_element of a is likely

to change by Aa i in the time interval At, then

Aa_ (5.4)
ith diagonal element of Qa = "-_'"

Augmenting the dynamic model of Eq. (5.1) with Eq. (5.3) yields:

It is assumed that the observer estimates the vector x_ by using a measure-

ment vector i_ which consists of the two-dimensional coordinates of the viewed

object in the perspective image. The vector i_ relates to the vector x_ via the rela-

tion

g = ,Y--_(x_). (5.6)

The fimction $'/(.) can be derived by using the fundamental assumption of

the static perception model. Namely, that the observer reconstructs the vector x_

by minimizing a cost function J(Z), this can be written as:

X_ = arg minJ(Z_). (5.7)

Hence, _(-) is the inverse of the relation in Eq. (5.7).

The observer reconstructs the scene by an on-line estimation of the state x_

using the measurement vector Z. The model assumes that this estimation pro-

cess can be modeled as a Kalman filter that estimates the states of the dynamic

system in Eq. (5.5) while using the measurement equation of Eq. (5.6). By writ-

ing the equations for the estimation error covariance matrix of this Kalman ill-
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ter, the judgement errors of the observer can be predicted.

Note, that Eq. (5.7) states that both parts of the vector X (the parameter vec-

tor z_ and the motion parameter vector _a) may be inferred from a single static

image. This is true if the image contains geometrical representations of motion

parameters, e.g. velocity vectors.

5.3 Mathematical Formulation

The first step to writing the falter covariance equation is to linearize

Eqs. (5.5),(5.6) about the true viewing parameters and the true parameter vector

X. Let the value of the parameters at the linearization point be designated by

the subscript (')0, then Eq. (5.5) can be linearized as:

where the matrix A(a_0, t)

= A(ao, t)x + w(t) (5.8)

is the linearization of the function ff(_a, t) about % :

and x_ = x_- x_0 is the difference between the true parameter values and the esti-

mated parameter values.

To linearize Eq. (5.6), we note from Eq. (5.7) that the matching cost ] is at a

minimum, hence linearize the gradient of .1, and equate to zero:

Jx(X_, Z_) = 0 = Jx(X_o, Z_o) + Jxx x_+ Jxz z. (5.10)

where z_0 is the coordinate vector of the true image, and _z= Z- _z0 is the differ-

ence between the coordinate vector of the virtual image and that of the true

image. Since for the true image the cost is at a minimum, Jx(X_o, Z_o) = 0, solving

for z_Eq. (5.10) becomes:

+

z = ]xzJxxx (5.11)
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where J+_zis the Moore-Penrose Pseudo-Inverse of the matrix J;z- By assuming
+

a random measurement noise and substituting H = JxzJxx, we get the measure-

ment equation:

_z = Hx_+ v(t) (5.12)

where v_(t)- N(0, R). Note that H = H(t) is a function of time, as it depends on

the perspective projection and the position of the objects in the three-dirnen-

sional scene, as the cost J is affected by their values.

It is now possible to write the error covariance propagation equations for a con-

tinuous extended Kalman estimator which is estimating the states in Eq. (5.8),

using the measurements of Eq. (5.12) as:

P = A(t)P + PA(t) r + GQG T - PH(t)TR-1H(t) P (5.13)

Eq. (5.13) describes the propagation of the covariance of the observer's judg-

ment errors with time. In the ATC implementation, the A(t) and H(t) matrices

can be considered as quasi-static, and the error covariance p(t) of the filter can

be assumed to be at a steady state. This is due to the typical scales of ATC in

which the controlled volume is large compared with aircraft velocity, causing

the aircraft to remain for long periods of time in the image, slowly moving in it. "t

Hence the algebraic form of the Riccad equation, obtained by setting P = 0 in

Eq. (5.13), is used.

5.4 Comparison of the Dynamic and Static Model

Since both models are based on the minimization of the matching cost, it is

expected that in a static image, both models will yield the similar judgement

error behavior. The scene that was used for the comparison is the scene with

two disks with drop bars that was used in the analytical evaluation of the static

model (Section 2.4 on page 3 0).

Figure 5.1 shows the predicted judgment errors of the ego parameters with

the two models for different azimuth angles of the viewing direction. In produc-

ing Figure 5.1, the noise covariance matrices, R and aa, were calibrated such

t Typically, a controlled sector is 150 nautical miles in diameter, an aircraft velodty is 600

knots, taking the aircraft about 15 minutes to traverse the controlled sector.
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Figure 5.1: The judgment errors of the ego-parameters: viewing azi-

muth 't', viewing inclination O and viewing distance, as a function of

the viewing azimuth.

that the errors in the graphs of the static model predictions and the dynamic

model predictions will be minimal. Figure 5.1 shows that the two models exhibit

similar trends. The graphs are not identical since the two models assume differ-

ent mechanisms in creating the judgment errors.
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5.5 Summary

Spatial awareness requires the controller to perceive aircraft motion and future

trajectories. Hence, by predicting the judgment errors of motion parameters, the

dynamic perception model can be used to rate the degree in which a perspective

image supports spatial awareness. This rating system was tested in the experi-

ment presented in Chapter 6. The model is a reformulation of the static percep-

tion model in a filtering framework. Its novelty is in the ability to measure the

judgement errors in perceiving the spatial motion of objects from perspective

images.
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1 IIII

: Part-TaskExperiment:Moving Images

6.1 Introduction

ATC scenes, that evolve in time, demand from the operator to judge future situ-

ations by projecting the current situation into the future. The dynamic spatial

percepdon model of Chapter 5 describes the process by which the operator uti-

lizes the dynamic changes in the display for estimating the motion of objects in

the scene. Like with the static model, the dynamic model is incorporated into

the objective function. In this case this objective function rates the dynamic

image on how well the operator is able to judge current and future situations

from this image.

The part-task experiment presented in this Chapter, is designed to evaluate

whether the selected optimal viewing parameter setting indeed yields the "best"

display from which the operator is able to judge both current andfuture situations.

The experiment included two tasks. In the first one, abstracted from the ATC
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flow control task, the subject was asked to select from an ATC scene evolving in

time, the pairs of aircraft which might violate separation constraints, sometimes

in the future. In the second task, the subject was asked a number of questions

about a specific aircraft pair in the scene, related to the present and future rela-

tive position between the aircraft. Since the experiment was conducted fully

automatically (without the experimenter verbally asking the questions), a

unique response method has been developed. In this method a data tablet was

used, sensitive to the pressure of a special pen. On this tablet, a "routing chart"

was drawn, on which the questions were represented graphically. The method

was inspired by the graphical layout of the Cooper-Harper scale, used in evalu-

ating vehicle handling qualities. As the subject proceeded through the chart, the

chosen path determined the next question to be asked. The unique advantage of

the chart was, that it allowed questions about azimuth angles between aircraft to

be answered in a natural way, by indicating this azimuth angle on a wind rose.

Thus, the horizontally placed wind rose naturally represented angles in the hor-

izontal plane.

6.2 Purpose

In the second part-task experiment abstracted ATC scenarios evolving in time

were shown to subjects. They were asked to interpret dynamic and spatial rela-

tions and to project their future state. The objectives were:

1) To evaluate the effect of viewing parameters on the operator's ability to

project future situations.

2) To evaluate the effect of viewing parameters on the operator's ability to

interpret dynamic quantities.

3) To compare between the operator's spatial judgement performance in

optimized perspective displays and in "conventional" plan-view displays.

4) To compare between the operator's spatial judgement performance in

conventional and in enhanced graphical presentations.

6.3 The Graphical Display

Four display types were used which differed in their usage of perspective or

plan-view projection and in the graphical symbology.
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6.3.1 Conventional"Plain" Graphics

A graphical representation was modeled after the symbology common to cur-

rent ATC displays, and is referred to as the "plain" graphics. The graphical rep-

resentation includes only elements which are necessary for the experiment task

and is not intended as an operational ATC display. A perspective display with

plain graphics is presented in Figure 6.1. Each aircraft is represented as a circu-

lar disc, connected to the ground grid by a drop bar which consists of

gray/white colored segments at 2000 feet intervals. The segments, which were

not present in the first experiment, were added as a reference to aid the subjects

in the detection of climb and descent rates. The ground is represented by a rect-

angular grid evenly spaced at 10 nautical mile intervals and spanning 150 nauti-

cal miles, representing a typical ATC control sector in En-Route Centers. The

plan-view display with plain graphics is a top-down orthogonal projection of the

symbology in the perspective display, augmented with data-tags displaying air-

craft altitude in hundreds of feet; it is depicted in Figure 6.2.

The motion of the aircraft is shown for a duration of 15 seconds, referred to

as the trace period, after which the aircraft are retraced to their initial position

for the next trace. The aircraft display is blanked for 0.4 seconds during the

retrace in order to avoid apparent motion reversal and to circumvent compari-

son of end-to-start positions. The relatively short duration of the trace period is

sufficient to provide motion cues without changing the image considerably, thus

keeping the optimization score approximately constant.
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Figure 6.1: A perspective display with plain graphics.
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Figure 6.2: A plan-view display with simple graphics.
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Figure 6.3: The graphically enhanced aircraft representation in the per-

spective display and the angle between trajectories.

6.3.2 Enhanced Graphics

The enhanced graphics adds cues to aid the perception of aircraft ground and

vertical velocities, as these data will be available in future ATC developments t

(FA.A 1996; RTCA 1995). A detailed view of the aircraft representation in the

graphically enhanced perspective display is shown in Figure 6.3, the full display

is depicted in Figure 6.4. The aircraft are represented as fiat chevrons pointing at

the direction of flight. At the bottom of each drop bar an arrow in the ground

plane represents the ground velocity by pointing at the aircraft's predicted posi-

tion 30 seconds ahead, assuming constant ground velocity, such that the length

of the arrow and the size of its head are proportional to the ground speed. For

climbing or descending aircraft, a triangle is drawn pointing at the predicted alti-

tude 30 seconds ahead, assuming constant vertical speed. The triangle is colored

red if the aircraft is descending and green if it is ascending, in which case the

drop bar is extended to the future altitude. Figure 6.5 shows that the enhance-

t Current aircraft equipment does not provide rate of decenddimb information, but such in-

formation may be available in the future, when GPS is incorporated. Ground velocity is

presendy unavailable as well, however, air speed, as measured by the aircraft, is transmit-

ted to the ATC station, which enables the controller to compare speeds of aircraft traveling
at the same altitude and direction.
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Figure 6.4: A perspective display with enhanced graphics.
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Figure 6.5: A plan-view with enhanced graphics.
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ments in the plan-view display includes the ground velocity arrow and a rate of

climb/descent readout in feet/minutes. For non-zero rates, a green up-pointing

arrow is shown for climb and a red down-pointing arrow for descent. The same

trace and retrace periods as in the plain graphics were used.

6.4 Description of the Task

The subjects were asked to perform two different spatial tasks. The first task, a

pair selection run, required the subject to project future situations; the second

task, a questionnaire, required the subject to estimate spatial and dynamic quan-

tities of selected aircraft pairs.

6.4.1 Pair Selection Runs

The purpose of these runs was to evaluate the subjects' ability to interpret mov-

ing spatial scenarios and project future horizontal and vertical separations. An

animated ATC scene was shown, abstracted from a hypothetical ATC situation.

The subjects were told that in this scene, four out of all aircraft pairs will violate

a horizontal and vertical separation criteria sometime in the future. These pairs

were referred to as "aircraft pairs in violation", and the subjects were asked to

identify them. The available time to complete the task was limited and was dis-

played on a dial at the lower right comer of the screen, see Hgures 6.1-6.5. The

run was terminated automatically if the time limit was reached or if more than

six aircraft pairs were selected. The subjects were allowed to manually terminate

the run earlier if they felt they identified all the violating aircraft pairs.

The separation criteria were 10 nautical miles in ground distance and 1000

feet in altitude separation for all runs. The criteria were communicated to the

subjects both verbally and using the separation volume display used in the first

experiment, see Figure 4.2 on page 68. The subjects were told the grid size and

the drop bar segment length. Each aircraft pair selected by the subject was classi-

fied as a "hit" if it was in violation or as "false alarm" if it wasn't. In addition,

violating aircraft pairs that were not selected by the subjects were classified as a

"miss".

90

6.4.2 Questionnaire on Aircraft Pair State

The purpose of these runs was to evaluate the subject's performance in estimat-

ing spatial and dynamic features of specified aircraft pairs and in projecting their

Descriptionof the Task
o



future state. An air traffic situation is shown to the subjects, identical to the pair

selection runs. A queried pair was highlighted, one aircraft in red and the other

in blue. The subjects had to answer a series of questions designed to evaluate

their spatial judgment performance of the aircraft situation. A novel method for

presenting the questions and responding to them was used. The questions were

drawn in a map that was placed on a data tablet. The subjects answered the

questions by traversing the map, and clicking with a special pen along the route.

A full-scale map is presented in Figure 6.17 (page 104), a sample traversal path is

shown in Figure 6.6, the question answered by each pen click along this path are

explained in Table 6.1. Depending on the route in the map which the subject

chose, the follo_-ng judgements were made: the time the aircraft will reach

equal altitude, the angle between trajectories (see Figure 6.3), current and future

(two minutes ahead) relative position, and the confidence level of these judge-

ments. The advantages of using a map to perform the judgements was twofold:

(1) judgements of horizontal situations were answered on a horizontal device,

avoiding a possible source of errors (Cunningham and Pavel 1991; Mittelstaedt

1991); (2) the map provided a visual representation of the questions enabling

rapid traversal once the subjects were familiarized with its layout.

The goal was to complete the questions in one minute. A dial showing the

time left was displayed at the lower right comer of the screen and a bell was

rang at the end of the time. The subject was permitted to complete the map tra-

versal even if the goal time was reached.

The set of aircraft pairs that was queried included the violating pairs and

those the subject selected in the selection run. A random aircraft pair was added

to the queried set in case all four violating pairs were correctly selected to pre-

vent the subject from recognizing the queried pairs.

6.4.3 Run Sequence

The entire set of runs was randomized for each subject. The pair selection run

always preceded the questionnaire run for a specific airspace and viewpoint.

Thus the subject would alternate between answering a pair selection run and an

aircraft questionnaire run. The aircraft pairs in the questionnaire run were ran-

domly ordered.
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Figure 6.6:The map with the questions on the relative aircraft pair situation and a

sample traversal path, indicating the pen clicks.

1 Start, aircraft pair is highlighted

2 Ground separation between aircraft is closing

3 Altitude separation between aircraft isclosing

4 Aircraft altitude will be equal in 2 minutes

5 Heading of blue aircraftwith respectto ted's heading is 105 degrees clockwise.

6 Currently,blue aircraft isat a distanceof 30 miles from red,at an angle of 45 degrees counter-clockwise

with respect to red'sheading.

7 In two minutes, blue aircraftwillbe at a distanceof 15miles from red,at an angle of 90degrees clockwise
with respectto red'sheading

8 Subject is very confident of his/heranswers.

9 End,aircraft pair is de-highlighted.
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Table 6.1: The question answered by each dick of the sample path.
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6.5 Experiment Design

The experiment's independent variables were:

1) The a/rcrafi/oad/eve/, i.e. the number of aircraft in the airspace. Two load

levels were tested, 15 aircraft representing current aircraft loads in busy

ArC centers, and 25 aircraft.

2) Pr_ection _ype, unopdmized perspective display (low image score), opti-

mized perspective display (high image score) and plan-view display.

3) Level of graphical detail, i.e. plain graphics and enhanced graphics.

Two viewing parameter settings were generated at each optimization level, and

three airspace scenarios were generated for each combination of independent

variables, as is depicted in Figure 6.7. The objective function used in generating

the optimized viewpoints utilizes the dynamic perception model and is given in

Eqs. (A.1),(A.2) on page 111. The familiarity cues that were used in the

dynamic perception model stipulated the observer knows the size of the ground

grid, that the drop bars are perpendicular to the ground plane, and assumes the

aircraft are moving at a constant velocity. In the graphically enhanced scenes,

the observer also assumes that the arrow is proportional to the aircraft velocity.

The different optimization levels were generated by randomly choosing view-

points with different scores from the solution population history of a genetic

algorithm that was configured to explore a large portion of the solution space.
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6.6 Subject Background, Instruction and Training

Two subject groups participated in the experiment; five active air traffic control-

lers, of which one was female, and five graduate students of which two were

female.

The subjects were told that the purpose of the experiment was to evaluate

their ability to interpret spatial scenes. The two types of runs were demonstrated

in all the display types, during which the subjects were familiarized with the

task, the separation criteria, the method of selecting aircraft pairs and the usage

of the tablet. Following this demonstration the subjects performed a series of

eight aircraft selection training runs and eight aircraft questionnaire runs. Dur-

ing the first two runs of each type, the subjects received both immediate audio

and visual feedbacks on their answers. The last six runs of each type were con-

ducted with only audio feedback in the selection run, and with the instructional

graphics being presented after repetitive mistakes in the questionnaire runs. The

instruction, demonstration and training lasted about two hours. The production

(data collection) included a questionnaire run and a selection run in each of the

60 scenes (see Figure 6.7), and lasted between five to six hours.

6.7 Results

The results are summarized in Figures 6.8-6.16, which present bars grouped by

display type: "2D" being the plan view display; "High" being the optimized per-

spective display, i.e. high image score; "Low" being the unoptimized perspective

display, i.e. low image score. The error bars (only upper half is shown) represent

one standard error. Effect was tested using an ANOVA, and a post-hoc Games

and Howell (1976) comparison was used to check for differences at a signifi-

cance level of 50/0 (a = 0.05 ). Horizontal lines are drawn between bars for which

the effect of display type, inside each group, was found significant.

Figures 6.8,6.9 present the mean number of hits and false alarms in the

selection runs. The hit results were further analyzed in Figures 6.10,6.11 which

show the probability of a violating pair to be selected Pr(Hit), and a decomposi-

tion to twO cases; Pr(I-IitlVS S0) is the probability of a violating pair to be

selected if one, or both, of the aircraft has a non-zero vertical speed, referred to

as a vertical violation; Pr(Hit I VS = 0) is the probability of a violating pair to be

selected if both aircraft have a zero vertical speed, i.e. the aircraft motion is
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entirely in a horizontal plane, referred to as a horizontal violation.

Judgement errors from the questionnaire runs, and the confidence level, are

depicted in Figures 6.12-6.16. The errors in estimation and projection of the

ground distance between aircraft, relative to their true distance, is presented in

Figure 6.12. The position error, which is the distance between the indicated blue

aircraft position and its true position, relative to the true distance between air-

craft is shown in Figure 6.13. The error in estimating the time aircraft will reach

equal altitude, relative to the true time is presented in Figure 6.15. The confi-

dence level is grouped by the type of the subjects in Figure 6.16.

6.7.1 The Effect of Viewing Parameter Optimization

Viewing parameter optimization has a significant effect on the spatial awareness

in complex images, where complexity is brought forth both by graphical detail

and aircraft load. This is reflected in the increase in the number of hits and the

decrease in the number of false-alarms in Figures 6.8,6.9 for enhanced graphics

at high load, and the lack of a significant difference in the other cases. This reit-

erates the findings of the first experiment, and establishes them for motion.

From Figure 6.10 one sees that optimization affects both when vertical speed is

present, and when it isn't, which may be attributed to the distribution of the

optimization effort between the different geometrical features of aircraft pairs.

The judgement and prediction errors of the subjects decreases with opti-
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mized viewing parameters, as is visible in Figures 6.12-6.14. The confidence

level increases with the optimization (Figure 6.16) indicating the subjects pre-

fen'ed optimized displays.

6.7.2 Plan-View Vs. Perspective

The optimized perspective displays provided better spatial awareness than plan-

view displays in complex scenes (enhanced graphics and high load), as is evi-

dent in the higher number of hits in Figure 6.8. The advantage of graphically

enhanced perspective displays in the hit performance is apparent regardless of

the presence of vertical speed, see Figure 6.10, which might be attributed to their

tendency to naturally allocate the user's attention to "prime" areas of the screen.

As image complexity is reduced, this advantage apparendy diminishes, until in

the plain graphics at low loads, plan-view displays have the upper-hand over the

perspective displays; possibly due to the accurate read-outs of the data-tags

which loose effectiveness in congested displays.

In the horizontal plane, Figures 6.12-6.14 shows that judgement and predic-

tion performance of the plan-view display were comparable to those of opti-

mized perspective ones, disproving a common criticism that ground distance

judgments cannot be done as accurately in perspective displays as in plan-view

ones (Gregory 1977; Wickens, Haskell and Harte 1989). Also, Figure 6.16 sug-

gests that the subjects felt as confident to perform judgements in optimized per-

spective displays as in the plan-view ones. Moreover, the perspective display's

natural integration of both the vertical dimension and the graphical enhance-

ments, can explain the better judgment performance of the time-to-equal-alti-

rude, see Figure 6.15.

6.7.3 The Effect of Graphical Enhancements

The effect of graphical enhancements was significant in improving the hit and

false-alarm performance of both perspective displays in Figures 6.8,6.9. In par-

ticular their effect is visible on vertical violations, see Figures 6.10,6.11, for hori-

zontal violations, a significant effect was observed only for optimized displays.

The higher effectiveness of the graphical enhancements in perspective displays

is an indication of their natural interpretation.

The graphical enhancements were added in order to improve the ability to

comprehend aircraft velocities. Indeed, they had no effect on present distance



and position estimation, see Figures 6.12,6.13. Alas, neither did they have an

effect on the ability to project future distances and positions, nor on trajectory

angle estimation (Figure 6.14). An improvement was only observed in the unop-

timized (plain) perspective displays, which was comparable to the improvement

achieved from optimizing the viewing parameters without enhancing the graph-

ics. The high variability of the time-to-equal-altitude judgements in the plain

graphics (Figure 6.15) as opposed to that of the enhanced one, indicates that the

time estimation was only possible with graphical enhancements.

A general improvement with graphical enhancements in the confidence level

of both subject groups was observed, see Figure 6.16. The mixed results suggest

that for an effective spatial perception enhancement, a comprehensive optimiza-

tion scheme should be applied, selecting both the viewing parameters and the

level and type of graphical enhancements.

6.7.4 The Effect of Aircraft Load

While the plan-view and unopfimized perspective displays suffered a high per-

formance loss when increasing aircraft load, see Figures 6.8,6.9, optimized per-

spective displays suffered the least. This was particularly noticed in the

probability of hit for vertical violations in the plain-graphics plan-view displays

(Figures 6.10,6.11), indicating the difficulty of detecting vertical speeds from alti-

tude data-tags in congested displays. Since in the questionnaire runs the queried

pair was highlighted, aircraft load had no effect on these runs.

6.7.5 The Effect of Subject Background

A significant difference between the two subject groups was observed only in

the confidence level, Figure 6.16, the ATC generaUy being more confident. The

confidence of both subject groups in optimized perspective displays was higher

than it was in unoptimized ones, and equal to that of plan-view displays. How-

ever, a higher confidence in plain-graphics plan-view displays was reported by

the ATC subjects, which can be explained by their experience with similar dis-

plays. The lack of a significant difference between the subject groups in other

measures can be explained by the nature of the experiment task which required

spatial awareness, but no ATC knowledge.

Part-Task Experiment: Moving Images ii01



6.8 Summary

The experiment proved the feasibility of designing perspective displays for the

enhanced perception of geometrical features. Optimized perspective displays

yielded a better spatial awareness than unopfimized ones, and an overall better

performance than plan-view displays in complex scenes. A novel method, using

a map drawn on a tablet, was used to register the answers of the subjects in

judging the spatial state of aircraft pairs. These judgements showed that opti-

mized perspective displays enable equivalent performance in ground plane esti-

mations and superior performance in the vertical plane. This improvement was

also reflected in a user preference towards optimized perspective displays.
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". Discussion

A novel method for rating the quality of both static and dynamic perspective

displays has been developed. This rating depended on the viewing parameters,

the scene contents, and the task to be performed. In order to compute the rat-

ing, a perception model was used, which predicted the errors that a human

observer would make in reconstructing the three-dimensional layout from the

two-dimensional perspective display. The rating was used in a GA-based optimi-

zation engine, to select the "best" viewing parameter setting for the given dis-

play, scene contents, and task. The optimized display was shown to effectively

support spatial awareness.

The effectiveness of optimizing the viewing parameters of the display has

been dearly demonstrated in a series of experiments, in which the subjects per-

formed a spatial awareness task. The performance in this task, when using opti-

mized perspective displays, was superior to that of plan-view displays or that of

perspective displays with manually chosen viewing parameters. Hence, the

...105...



importance of properly selecting the viewing parameters was dearly shown.

An active display concept was conceived that automatically selects the opti-

mal viewing parameters to enhance the spatial perception of geometrical fea-

tures. A novel GA based optimization approach was presented to exploit the

time continuity of the optimized objective function by locating local maxima

early in their "evolution". This approach was possible due to a new niche forma-

tion technique which combined two existing techniques together with a new def-

inition for a geometrically meaningful distance function.

Graphical enhancements, such as velocity vectors or altitude predictors,

increase their effectiveness in optimized perspective displays. Optimizing both

the format of the graphical enhancements, as well as the viewing parameters,

may be mutually supportive in improving the level of spatial awareness obtained

from the display.

From the components of the active display system, our research was mainly

concerned with the scene analyzer and the optimization engine with its spatial

perception model. The other two components, i.e. the decision algorithm and

the path planner, are subjects for further development. GAs may be further

exploited for the active display problem by adapting them to Pareto optimiza-

tion, "t which may enable agility in adjusting to changes in user priorities. A com-

plete active display system should also consider and incorporate the auxiliary

data that will be available in future ATC scenarios. Having a fully-fledged active

display system will enable to test the concept in full-task experiments and in

their natural ATC environment. A promising area for future development is the

cockpit displays of traffic information. It constitutes an ideal application for opti-

mized perspective displays, as a good measure of spatial awareness is obtainable

from an "overview" glance of the image, requiring numerical data only for add-

ing accuracy.

Optimized perspective displays are not limited to air traffic control applica-

tions. They may be used in other applications that require the presentation and
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1"Pareto optimization deals with vector functions fl (x)...fn(x). Solution x is said to be

dominant over solution y ff fi(x) >_fi(Y) for all i = 1 ...n, and there is a j such that

1 < j < n and fj(x) > f .(y) The dominant front is the set of all solutions in the solution
J . ° .

space which are not dominated by any other solutaon, thus it is the set of all points that

maximize the scalar function _wifi(x ) for all possible values of w i . GAs are suitable for
Pareto optimization since the dominance relation which is defined only between two

points, can easily be incorporated to a selection scheme.



the processing of complex, time-varying spatial information. Computer aided

design (CAD), teleoperator navigation and database visualization are but a few

examples of such applications. The active display system can enable a task cen-

tered interface, by having the user indicate the geometrical features of interest,

rather than manually manipulating the viewing parameters for best viewing

these features. An optimization, aimed at deliberately directing judgment errors

in desired directions, can create visual effects, e.g. an architect may desire a

building to appear taller than it is, a photographer may desire a room to appear

more spacious than it is. Thus, the spatial perception model can accurately con-

trol visual effects that are currently being practiced by artists using rules of

thumb. It is well-known that the "classical" artists have introduced deliberate

geometrical distortions in the projection geometry, in order to communicate the

spatial features in the best possible way. Apart from the projection geometry, the

spatial perception model can easily be extended to indude texture, lighting,

shaded light, occlusion and stereoscopic vision. By including the placement of

light sources and object textures in the objective function, by appropriate formu-

lation of the perception model, the optimization of more complex images, than

the ones used in this study, will be possible. The basic principle, used in the per-

ception model, namely, that the variance of the judgement errors is proportional

to the curvature of the matching cost function, can be easily extended to differ-

ent scene attributes, like texture and shading.

This study proved perspective displays with viewing parameter optimization

to be an effective means of delivering spatial information. Their design, and

implementation in the experiments, was aimed at specific spatial tasks; the first

being the identification of certain spatial criteria (separation violation) whether

present or future, the second task being judging spatial features. These tasks

were designed to measure the spatial awareness and comprehension of the sub-

jects, and do not necessarily reflect the actual task air traffic controllers perform.

Controllers are required to process spatial data and perform spatial tasks, such

as the rerouting of air traffic in the airspace. The crux of the task is the require-

ment to work with spatial information. By configuring the objective function to

accurately reflect the operator's task, optimized perspective displays provide the

the optimal way in which the required spatial information can be transferred to

the operator.
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: Rating lmage Quality

An objective function was constructed to rate the image quality for use in the

optimization engine. This funcdon is based on the predicted errors in the per-

ception of geometrical features the scene analyzer picked for enhancement. The

scene analyzer and the construction of the objective function are presented.

A.1 The Scene Analyzer

The scene analyzer identifies events in the airspace the geometrical features of

which are to be enhanced. An event in the airspace is defined as an aircraft situ-

ation in the airspace which is of interest to the controller. Several studies were

conducted to establish what information controllers use when dealing with air

traffic (Amaldi et al. 1996; CourteixKherouf 1998). This was achieved by inter-

rupting controllers and requesting them to reconstruct from memory the air-

space they were just controlling. The folowing spatial data were found to be

noted by controllers:
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110: The Scene Analyzer

• Aircraft that are expected to violate a separation criteria if let to continue

on their current course.

* Aircraft that axe headed for the same destination.

The scene analyzer assigns weights to the geometrical features passed to the

optimizer. The weights reflect the relative importance of each geometrical fea-

ture and are used by the optimizer in constructing the objective function. The

following events were identified:

1) Aircraft that are currendy in violation of a separation criteria. These were

assigned the maximum weight w = Wmax . The separation criteria used in

selecting these pairs was larger than the critical criteria controllers must

guarantee between aircraft or the criteria the subjects were shown in the

experiments. Typically, a separation twice the critical separation was used

to ensure that aircraft that are not in violation, but are at a separation

close to the critical one, are also enhanced by the optimizer.

2) Aircraft that are predicted to violate a separation criteria in the future if

let to continue in their current course. The same separation criteria as in

the previous aircraft pair type was used. The weight was assigned to

these pairs relative to the time-to-violation (TIW) of the pair, such that if

the TI'V is zero, the weight assigned is Wm_ and when the TFV is equal

20 minutes, the weight assigned is w I . Values of "I'IW beyond 20 min-

utes, which is considered the "horizon", are ignored.

3) Aircraft headed to the same destination. The weight on these aircraft was

assigned to be the lowest, and was set relative to the time-to-destination

(TTD) of the first aircraft in the destination and the time separation at

the destination (rSD) between the aircraft, such that it was always

between w 2 and w 3 . If TTD+TSD/2 is greater than 30 minutes, or

TSD/2 is greater than "FED, this aircraft pair is ignored.

This arrangement is suitable for a TRACON control, for En-Route control,

the time constants will have to be adjusted to the different time scales of En-

Route control. The weights Wmax, w v w 2, w3 were set by experimentadon, and by

observing the relations: Wmax > w I , w ! = w2 and w 2 > w 3 .



A.2 The Objective Function

The optimization engine maximizes the objective function, which reflects the

quality of viewing of the relevant geometrical features in the image. The score

qi of the i th aircraft pair is

qi = max(_-_a, Md)+ max(_ a' Mal+ maX(_vv, Mvl+ maxI_ c, Mc)
(A.1)

where d, a, v and c are the actual ground separation, altitude separation, relative

ground velocity and relative climb/descent rate between aircraft, respectively;

o a, oa, ov and oc are the perception errors of d, a, v, c, respectively, and are calcu-

lated by the perception model. M a, M a, M v, M e are constants.

Eq. (A.1) states the viewing quality score is relative to a saturated sum of the

reciprocals of the relative errors in each geometrical feature of the aircraft pair.

The constants M(.) indicate the saturation level and set a desired error level in

each feature. The aim of the saturation function is to distribute the optimization

effort to decreasing the errors in all features. A saturation was suitable for this

task due to the singular nature of the errors, which for different viewing param-

eters can vary from infinitesimally small values to infinitely large ones.

The image score Q is set according to the doctrine that the image quality is

the average viewing quality of all aircraft pairs, as long as the worst viewed air-

craft pair has a reasonable viewing quality, yielding:

1 N

_,Xmin (qi))

(A.2)

According to Eq. (A.2), the image quality is taken as the smaller of the

weighted average of the aircraft pair viewing qualifies or _. times the quality of

the worst viewed aircraft pair. The weights wi are set by the scene analyzer and

are normalized such that their sum is unity. This scheme was selected in order

to avoid situations in which the optimizer generates viewpoints which are

focused on a single aircraft pair, raising its viewing score in expense of the other

pairs in the scene.
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" Analysesof Niching Schemes

B.1 The Sharing Parameter

The workings of the sharing principle depends on the parameter cr of the shar-

hag function in Eq. (3.3), which is the maximum distance between solutions nec-

essary to form as many niches as there are peaks in the function. Deb et al.

(1989) suggest a method for choosing the parameter c under the assumption

that there are q peaks ha the function, each occupying an equal space in the p-

dimensional solution hyperspace, yielding

r 031)

with r being the radius of the p-dimensional solution hyperspace, and depends

on the maximum and minimum value of each parameter.

An analysis can provide insight to the effectiveness of the sharing scheme
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and the meaning of the sharing parameter o. Assume that there are two peaks

in the function, with unshared fitness values of fl and f2 respectively. Assume

further that the population consists of n members and is divided into two pro-

portions n I and % on each peak, respectively. To maintain a stable population

on each peak, the shared fitness of the solutions on each of the peaks must be

equal, yielding:

fl = f2 (B.2)
nl + n2s(1,2) n2+ nls(1, 2)

or

fl nl + n2s(l' 2)_ =. - 03.3)
f2 n2 + nlS(l' 2)

where T>_ 1 is the ratio between the peak fitness, s(1, 2) is the sharing function

value between members on peak 1 and peak 2. Eq. 03.3) can be rearranged to

yield:

n2 = 1 - Ys( 1, 2) 03.4)
n (1 -s(1, 2))(1 +T)"

To have a non-zero population on the second peak (with lower fitness value),

the numerator of Eq. 03.4) must be greater than zero, which together with

Eq. (3.1) on page 35 provides a condition on the distance between the two

peaks:

d(1, 2)>(1-_)_. 03.5)

Therefore, there is a lower bound on the distance between two peaks d( 1, 2),

which is dependent on the sharing distance parameter o and the ratio between

peaks. Note that if the peaks are equal, T = 1 any distance can exist between the

two peaks, in Genotype sharing this means even a one bit difference is sufficient

to create niches. The current analysis was performed without making any

assumption on the structure of d( 1, 2). A similar analysis that uses the assump-

tion that d(1, 2) is a genotype distance was carried out by Deb et al. (1989), who

wrongfully used this analysis as an argumentation against genotype sharing.
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B.2 On Deterministic Crowding

Deterministic crowding is a variation on a former algorithm, named crowding

(DeJong 1975). The idea behind crowding is to maintain population diversity

by diluting clustered members. In crowding, two members of the population are

selected according to their fitness, mated, and the offspring are inserted back to

the population in the following manner: A crowding factor (CF) number of mem-

bers are selected at random, and each offspring replaces the member of the CF

sample which has the smallest distance to it. The CF is a preset number that can

be selected in the range between two to the size of the population, and is usually

taken as a small number to reduce the computation effort.

Crowding per se is not considered as an effective means for locating and

maintaining multiple peaks in functions. Consider a function with multiple

peaks Pl-"Pk, and consider there is a member from peak P l awaiting insertion

to the population. Crowding chooses CF candidates from the population and

replaces the closest one. Assuming no errors in the comparison, an element of

peak Pl will be replaced if it is among the CF candidates. As long as all peaks

other than Pl together contain CF or more elements, these other peaks are vul-

nerable to loss of members. When peak Pl has n- CF + 1 members, one of its

members will always be in the CF sample, and the other peaks (at most CF- 1

such peaks) will not lose their members to Pl" Sampling and replacement

errors 1"during the initial evolution of the GA usually cause the crowding GA to

maintain but two peaks.

Deterministic crowding gains its effectiveness as a niching method due to the

observation that usually the closest member in the population to an offspring is

one of its parents (Mahfoud 1992). By deterministically selecting the parent with

the smaller distance, deterministic crowding gready reduces the number of sam-

piing and replacement errors. When the objective function has skewed peaks, as

in the active display optimization, usage of phenotype distance reintroduced

replacement errors when choosing which offspring should be considered to

replace which parent.

114 " On DeterministicCrowding

1"A replacement error is defined as the event in which a member from one peak replaces a

member from another peak. Sampling error is the event in which none of the candidates

for replacement belong to the same peak as the member awaiting insertion, which neces-

sarily leads to a replacement error.
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